亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 知識大全 > 方法百科 > 讀書技巧 > 高中三角函數(shù)學(xué)習(xí)方法

      高中三角函數(shù)學(xué)習(xí)方法

      時(shí)間: 朝燕820 分享

      高中三角函數(shù)學(xué)習(xí)方法

        目前高一的孩子們正在學(xué)習(xí)的是三角函數(shù),三角函數(shù)在整個(gè)高中數(shù)學(xué)中占據(jù)著很大比重,是高中數(shù)學(xué)教學(xué)的核心,也是描述現(xiàn)實(shí)生活中周期現(xiàn)象的重要數(shù)學(xué)模型,下面和學(xué)習(xí)啦小編具體了解下高中三角函數(shù)學(xué)習(xí)方法。

        高中三角函數(shù)學(xué)習(xí)方法:

        (1)、立足課本、抓好基礎(chǔ)

        現(xiàn)在高考非常重視三角函數(shù)圖像與性質(zhì)等基礎(chǔ)知識的考查,所以在學(xué)習(xí)中首先要打好基礎(chǔ)。

        (2)三角函數(shù)的定義一定要清楚

        我們在學(xué)習(xí)三角函數(shù)時(shí),老師就會(huì)強(qiáng)調(diào)我們要把角放在平面直角坐標(biāo)系中去討論。角的頂點(diǎn)放在坐標(biāo)原點(diǎn),始邊放在X 的軸的正半軸上,這樣再強(qiáng)調(diào)六種三角函數(shù)只與三個(gè)量有關(guān):即角的終邊上任一點(diǎn)的橫坐標(biāo)x、縱坐標(biāo)y 以及這一點(diǎn)到原點(diǎn)的距離r 中取兩個(gè)量組成的比值,這里得強(qiáng)調(diào)一下,對于任意一個(gè)α一經(jīng)確定,它所對的每一個(gè)比值是唯一確定的,也就說是它們之間滿足函數(shù)關(guān)系。并且三者的關(guān)系是,x2+y2=r2,x,y 可以任意取值,r 只能取正數(shù)。

        (3)同角的三角函數(shù)關(guān)系

        同角的三角函數(shù)關(guān)系可以分為平方關(guān)系:sin2α+cos2α=1、tan2α+1= sec2α、cotα2+1= csc2α,倒數(shù)關(guān)系:tanαcotα=1,商的關(guān)系:tanα=sinα/cosα等等,對于同角的三角函數(shù),直接用三角函數(shù)的定義證明比較容易,記憶也比較方便,相關(guān)角的三角函數(shù)的關(guān)系可以分為終邊相同的角、終邊關(guān)于x 軸對稱的角、終邊關(guān)于直線y=x 對稱的角、終邊關(guān)于y 軸對稱的角、終邊關(guān)于原點(diǎn)對稱的角五種關(guān)系。

        (4)加強(qiáng)三角函數(shù)應(yīng)用意識

        三角函數(shù)產(chǎn)生于生產(chǎn)實(shí)踐,也被廣泛應(yīng)用與實(shí)踐,因此,應(yīng)該培養(yǎng)我們對三角函數(shù)的應(yīng)用能力。

        拓展閱讀:高中三角函數(shù)的公式

        銳角三角函數(shù)公式

        sin α=∠α的對邊 / 斜邊

        cos α=∠α的鄰邊 / 斜邊

        tan α=∠α的對邊 / ∠α的鄰邊

        cot α=∠α的鄰邊 / ∠α的對邊

        倍角公式

        Sin2A=2SinA?CosA

        Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

        tan2A=(2tanA)/(1-tanA^2)

        (注:SinA^2 是sinA的平方 sin2(A) )

        三倍角公式

        sin3α=4sinα·sin(π/3+α)sin(π/3-α)

        cos3α=4cosα·cos(π/3+α)cos(π/3-α)

        tan3a = tan a · tan(π/3+a)· tan(π/3-a)

        三倍角公式推導(dǎo)

        sin3a

        =sin(2a+a)

        =sin2acosa+cos2asina

        輔助角公式

        Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

        sint=B/(A^2+B^2)^(1/2)

        cost=A/(A^2+B^2)^(1/2)

        tant=B/A

        Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),(此括號內(nèi)不是文章內(nèi)容,來自學(xué)習(xí)方法網(wǎng),閱讀請?zhí)^),tant=A/B

        降冪公式

        sin^2(α)=(1-cos(2α))/2=versin(2α)/2

        cos^2(α)=(1+cos(2α))/2=covers(2α)/2

        tan^2(α)=(1-cos(2α))/(1+cos(2α))

        推導(dǎo)公式

        tanα+cotα=2/sin2α

        tanα-cotα=-2cot2α

        1+cos2α=2cos^2α

        1-cos2α=2sin^2α

        1+sinα=(sinα/2+cosα/2)^2

        =2sina(1-sin²a)+(1-2sin²a)sina

        =3sina-4sin³a

        cos3a

        =cos(2a+a)

        =cos2acosa-sin2asina

        =(2cos²a-1)cosa-2(1-sin²a)cosa

        =4cos³a-3cosa

        sin3a=3sina-4sin³a

        =4sina(3/4-sin²a)

        =4sina[(√3/2)²-sin²a]

        =4sina(sin²60°-sin²a)

        =4sina(sin60°+sina)(sin60°-sina)

        =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

        =4sinasin(60°+a)sin(60°-a)

        cos3a=4cos³a-3cosa

        =4cosa(cos²a-3/4)

        =4cosa[cos²a-(√3/2)²]

        =4cosa(cos²a-cos²30°)

        =4cosa(cosa+cos30°)(cosa-cos30°)

        =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

        =-4cosasin(a+30°)sin(a-30°)

        =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

        =-4cosacos(60°-a)[-cos(60°+a)]

        =4cosacos(60°-a)cos(60°+a)

        上述兩式相比可得

        tan3a=tanatan(60°-a)tan(60°+a)

        半角公式

        tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

        cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

        sin^2(a/2)=(1-cos(a))/2

        cos^2(a/2)=(1+cos(a))/2

        tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

        三角和

        sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

        cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

        tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

        兩角和差

        cos(α+β)=cosα·cosβ-sinα·sinβ

        cos(α-β)=cosα·cosβ+sinα·sinβ

        sin(α±β)=sinα·cosβ±cosα·sinβ

        tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

        tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

        和差化積

        sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

        sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

        cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

        cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

        tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

        tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

        積化和差

        sinαsinβ = [cos(α-β)-cos(α+β)] /2

        cosαcosβ = [cos(α+β)+cos(α-β)]/2

        sinαcosβ = [sin(α+β)+sin(α-β)]/2

        cosαsinβ = [sin(α+β)-sin(α-β)]/2

        誘導(dǎo)公式

        sin(-α) = -sinα

        cos(-α) = cosα

        tan (—a)=-tanα

        sin(π/2-α) = cosα

        cos(π/2-α) = sinα

        sin(π/2+α) = cosα

        cos(π/2+α) = -sinα

        sin(π-α) = sinα

        cos(π-α) = -cosα

        sin(π+α) = -sinα

        cos(π+α) = -cosα

        tanA= sinA/cosA

        tan(π/2+α)=-cotα

        tan(π/2-α)=cotα

        tan(π-α)=-tanα

        tan(π+α)=tanα

        誘導(dǎo)公式記背訣竅:奇變偶不變,符號看象限

        萬能公式

        sinα=2tan(α/2)/[1+tan^(α/2)]

        cosα=[1-tan^(α/2)]/1+tan^(α/2)]

        tanα=2tan(α/2)/[1-tan^(α/2)]

        其它公式

        (1)(sinα)^2+(cosα)^2=1

        (2)1+(tanα)^2=(secα)^2

        (3)1+(cotα)^2=(cscα)^2

        證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

        (4)對于任意非直角三角形,總有

        tanA+tanB+tanC=tanAtanBtanC

        證:

        A+B=π-C

        tan(A+B)=tan(π-C)

        (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

        整理可得

        tanA+tanB+tanC=tanAtanBtanC

        得證

        同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

        由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

        (5)cotAcotB+cotAcotC+cotBcotC=1

        (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

        (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

        (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

        (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

        cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

        sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

        tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

      1006613