亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 教學(xué)方法 > 初中數(shù)學(xué)圓教學(xué)設(shè)計(jì)

      初中數(shù)學(xué)圓教學(xué)設(shè)計(jì)

      時(shí)間: 威敏1027 分享

      初中數(shù)學(xué)圓教學(xué)設(shè)計(jì)

        教學(xué)設(shè)計(jì)是教師對課程實(shí)施的設(shè)想、方案,是教師將教育理念付諸實(shí)踐的連接點(diǎn),是教育理念與教學(xué)實(shí)踐相結(jié)合的界面。圓是初中數(shù)學(xué)重要的一個(gè)知識點(diǎn),下面學(xué)習(xí)啦小編為你整理了初中數(shù)學(xué)圓教學(xué)設(shè)計(jì),希望對你有幫助。

        初中圓教學(xué)設(shè)計(jì)

        教學(xué)目的:理解圓的定義,掌握點(diǎn)與圓的位置關(guān)系,培養(yǎng)學(xué)生用數(shù)形結(jié)合思想方法分析解決問題的能力

        教學(xué)重點(diǎn)、難點(diǎn):圓的定義的理解

        教學(xué)關(guān)鍵:理解兩點(diǎn):①在圓上的點(diǎn),都滿足到定點(diǎn)(圓心)的距離等于定長(半徑);

        ②滿足到定點(diǎn)(圓心)的距離等于定長(半徑)的點(diǎn),在以定點(diǎn)為圓心,定長為半徑的圓上。

        教學(xué)過程:

        一、 復(fù)習(xí)舊知:

        1、角平分線及中垂線的定義(用集合的觀點(diǎn)解釋)

        2、在一張透明紙上畫半徑分別1cm,2cm,3.5cm的圓,同桌的兩個(gè)同學(xué)將所畫的圓的大小分別進(jìn)行比較(分別對應(yīng)重合)。并回答:這些圓為什么能夠分別重合?并體會圓是怎樣形成的?

        二、 講授新課:

        1、讓學(xué)生拿出準(zhǔn)備好的木條照課本演示圓的形成,用圓規(guī)再次演示圓的形成。

        分析歸納圓定義:

        在一個(gè)平面內(nèi),線段繞它固定的一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)隨之旋轉(zhuǎn)所形成的圖形叫做圓,其中固定的端點(diǎn)叫做圓心,線段叫做半徑。

        注意:“在平面內(nèi)”不能忽略,以點(diǎn)O為圓心的圓,記作:“⊙O”,讀作:圓O

        2、進(jìn)一步觀察,體會圓的形成,結(jié)合園的定義,分析得出:

       ?、?圓上各點(diǎn)到定點(diǎn)(圓心)的距離等于定長(半徑)

       ?、?到定點(diǎn)的距離等于定長的點(diǎn)都在以定點(diǎn)為圓心,

        定長為半徑的圓上。由此得出圓的定義:

        圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合。

        例如,到平面上一點(diǎn)O距離為1.5cm的點(diǎn)的集合是以O(shè)為圓心,半徑為1.5cm的一個(gè)圓。

        3、在畫圓的過程中,還體會到圓內(nèi)各點(diǎn)到圓心的距離都小于半徑,到圓心的距離小于半徑的點(diǎn)都在圓內(nèi)。

        圓的內(nèi)部是到圓心的距離小于半徑的點(diǎn)的集合。同樣有:圓的外部是到圓心的距離大于半徑的點(diǎn)的集合。

        4、初步掌握圓與一個(gè)集合之間的關(guān)系:

       ?、乓阎獔D形,找點(diǎn)的集合

        例如,如圖,以O(shè)為圓心,半徑為2cm的圓,

        則是以點(diǎn)O為圓心,2cm長為半徑的點(diǎn)的集合;

        以O(shè)為圓心,半徑為2cm的圓的內(nèi)部是到

        圓心O的距離小于2cm的所有點(diǎn)的集合;

        以O(shè)為圓心,半徑為2cm的圓的外部是到

        圓心O的距離大于2cm的點(diǎn)的集合。

       ?、埔阎c(diǎn)的集合,找圖形

        例如,和已知點(diǎn)O的距離為3cm的點(diǎn)的集合是以點(diǎn)O為圓心,3cm長為半徑的圓。

        5、點(diǎn)與圓的位置關(guān)系:

        點(diǎn)在圓上,點(diǎn)在圓內(nèi),點(diǎn)在圓外。

        點(diǎn)與圓的位置關(guān)系與點(diǎn)到圓心的距離的數(shù)量關(guān)系如下:

        設(shè)圓心為O,半徑為r,點(diǎn)P到點(diǎn)O的距離為d,則有

        點(diǎn)P在圓內(nèi) OP>r

        點(diǎn)P在圓上 OP=r

        點(diǎn)P在圓外 OP

        例1:求證:矩形的四個(gè)頂點(diǎn)在以對角線的交點(diǎn)為圓心的同一個(gè)圓上。

        〈分析〉證明多點(diǎn)共圓,由圓的定義知道,即要證明點(diǎn)A、B、C、D到點(diǎn)O等距離。

        三、 鞏固練習(xí):

        1、已知△ABC中,∠C = 90 ,AC = 2cm,BC = 4cm,CM為中線,以C為圓心, cm長為半徑畫圓,則A、B、C、M四點(diǎn)中在圓外的有

        在圓上的有 ,在圓的內(nèi)部有 。

        2、課本P

        3、我們學(xué)過的所有頂點(diǎn)共圓的圖形還有那些?

        33.5 O

        四、課后小結(jié):

        1、圓的兩種定義

        2、圓的內(nèi)部,圓的外部的定義

        3、點(diǎn)與圓的位置關(guān)系

        4、點(diǎn)與圓的位置關(guān)系和點(diǎn)到圓心的距離的數(shù)量關(guān)系

        5、多點(diǎn)共圓的證法

        五、布置作業(yè):

        課本P 1、(1,2)、2、3、4

        教學(xué)設(shè)計(jì)說明

        本節(jié)課主要是通過圓的概念的探討,深入地了解圓的形成,從而使學(xué)生脫離在小學(xué)時(shí)的對圓的膚淺認(rèn)識,掌握圓在初中的知識里更完整的定義。

        在教學(xué)重點(diǎn)上關(guān)鍵讓學(xué)生了解圓的兩點(diǎn),簡單的說,到圓心距離等于半徑的點(diǎn)在圓上,圓上的點(diǎn)到圓心的距離等于半徑,在圓的概念的引入時(shí),首先利用集合的語言去解釋圓,例如像前面學(xué)過的角平分線及中垂線的集合定義,然后利用圖形的畫法理解圓的定義,這樣設(shè)計(jì)的目的是為了培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

        在教學(xué)的講授中,先讓學(xué)生自己動手去演示圓的形成,要了解畫一個(gè)圓的兩個(gè)必需條件:定點(diǎn)和定長;讓學(xué)生自己去體會圓的概念,同時(shí),還會體會到圓的內(nèi)部和外部的意義,并能等同的用集合的定義解釋內(nèi)部和外部,從而又能引出一個(gè)點(diǎn)和圓的位置關(guān)系,那么,學(xué)生會在一系列的過程中更清楚的認(rèn)識圓的定義,更完整的了解圓。例題的設(shè)計(jì)是為了使學(xué)生掌握多點(diǎn)共圓必須要以定義為依據(jù),并能探索其他的所有頂點(diǎn)共圓的圖形。

        總之,本節(jié)課主要是以教師的引導(dǎo)和講授為主,通過學(xué)生的自我演示去了解圓的形成,培養(yǎng)學(xué)生總結(jié)歸納的能力,提高探索解決問題的能力,設(shè)計(jì)上總的框架先探索研究后理解應(yīng)用.

        初中學(xué)圓教學(xué)反思

        圓的教學(xué)在平面幾何中乃至整個(gè)中學(xué)教學(xué)都占有重要的地位,而直線和圓的位置關(guān)系的應(yīng)用又比較廣泛,它是初中幾何的綜合運(yùn)用,又是在學(xué)習(xí)了點(diǎn)和圓的位置關(guān)系的基礎(chǔ)上進(jìn)行的,為后面的圓與圓的位置關(guān)系作鋪墊的一節(jié)課,在今后的解題及幾何證明中,將起到重要的作用.

        直線和圓的三種位置關(guān)系是重點(diǎn),本課的難點(diǎn)是直線和圓的三種位置關(guān)系的性質(zhì)與判定的應(yīng)用。

        在說直線與圓的位置關(guān)系時(shí),讓學(xué)生自己動手去操作,去總結(jié)。 這樣既突破以下難點(diǎn)又把學(xué)生自然而然的帶入新的學(xué)習(xí)征程:

        (1)突破直線和圓不能有兩個(gè)以上的公共點(diǎn),讓學(xué)生討論,最后明確否定(因?yàn)橹本€和圓有三個(gè)或三個(gè)以上的公共點(diǎn),那么這與不在同一條直線上的三點(diǎn)就可以作一個(gè)圓,相矛盾)

        (2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運(yùn)動的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個(gè)數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。

        (3)突破直線和圓有唯一一個(gè)公共點(diǎn)是直線和圓相切(指直線與圓有一個(gè)并且只有一個(gè)公共點(diǎn),它與有一個(gè)公共點(diǎn)的含義不同)。

        根據(jù)學(xué)生的特點(diǎn),聯(lián)系生活實(shí)際中結(jié)合問題結(jié)合本節(jié)課適合學(xué)生的學(xué)習(xí)材料,注重激發(fā)學(xué)生的求知欲讓他們真正理解這節(jié)課是在學(xué)習(xí)了點(diǎn)和圓的位置關(guān)系的基礎(chǔ)上進(jìn)行的,為后面的圓與圓的位置關(guān)系作鋪墊。通過直線與圓的相對運(yùn)動,揭示直線與圓的位置關(guān)系。本節(jié)課主要采用了歸納、演繹、類比的思想方法,從現(xiàn)實(shí)生活中抽象出數(shù)學(xué)模型,體現(xiàn)了數(shù)學(xué)產(chǎn)生于生活的思想,并且將新舊知識進(jìn)行了類比、轉(zhuǎn)化,充分發(fā)揮了學(xué)生的主觀能動性,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體,真正成為學(xué)習(xí)的主人,轉(zhuǎn)變了角色。
      猜你感興趣:

      1.初中數(shù)學(xué)圓教案

      2.北師大版初中數(shù)學(xué)圓教案

      3.北師大版初中數(shù)學(xué)圓教案

      4.高中數(shù)學(xué)圓方程教學(xué)設(shè)計(jì)

      5.北師大版初中數(shù)學(xué)九下第三章圓教案

      6.初中數(shù)學(xué)圓的標(biāo)準(zhǔn)方程教學(xué)反思

      7.初中數(shù)學(xué)課教學(xué)設(shè)計(jì)范文

      3074692