初中數(shù)學(xué)八年級(jí)教案怎么設(shè)計(jì)
初中數(shù)學(xué)八年級(jí)教案怎么設(shè)計(jì)
教案是教育好學(xué)生的第一步,是教師上課必不可少的依據(jù)。那么初中數(shù)學(xué)七年級(jí)教案怎么設(shè)計(jì)?下面是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)八年級(jí)教案設(shè)計(jì)的資料,希望大家喜歡!
初中數(shù)學(xué)八年級(jí)教案設(shè)計(jì)一
菱形
一、教學(xué)目的:
1.掌握菱形概念,知道菱形與平行四邊形的關(guān)系.
2.理解并掌握菱形的定義及性質(zhì)1、2;會(huì)用這些性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算,會(huì)計(jì)算菱形的面積.
3.通過運(yùn)用菱形知識(shí)解決具體問題,提高分析能力和觀察能力.
4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
二、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):菱形的性質(zhì)1、2.
2.教學(xué)難點(diǎn):菱形的性質(zhì)及菱形知識(shí)的綜合應(yīng)用.
八年級(jí)數(shù)學(xué)上冊(cè)教案三、例題的意圖分析
本節(jié)課安排了兩個(gè)例題,例1是一道補(bǔ)充題,是為了鞏固菱形的性質(zhì);例2是教材P108中的例2,這是一道用菱形知識(shí)與直角三角形知識(shí)來求菱形面積的實(shí)際應(yīng)用問題.此題目,除用以鞏固菱形性質(zhì)外,還可以引導(dǎo)學(xué)生用不同的方法來計(jì)算菱形的面積,以促進(jìn)學(xué)生熟練、靈活地運(yùn)用知識(shí).
四、課堂引入
1.(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
2.(引入)我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,請(qǐng)看演示:(可將事先按如圖做成的一組對(duì)邊可以活動(dòng)的教具進(jìn)行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
【強(qiáng)調(diào)】 菱形(1)是平行四邊形;(2)一組鄰邊相等.
讓學(xué)生舉一些日常生活中所見到過的菱形的例子.
五、例習(xí)題分析
例1(補(bǔ)充) 已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點(diǎn),DF交AC于E.
求證:∠AFD=∠CBE.
證明:∵四邊形ABCD是菱形,
∴ CB=CD, CA平分∠BCD.
∴∠BCE=∠DCE.又 CE=CE,
∴ △BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2 (教材P108例2)略
六、隨堂練習(xí)
1.若菱形的邊長等于一條對(duì)角線的長,則它的一組鄰角的度數(shù)分別為.
2.已知菱形的兩條對(duì)角線分別是6cm和8cm ,求菱形的周長和面積.
3.已知菱形ABCD的周長為20cm,且相鄰兩內(nèi)角之比是1∶2,求菱形的對(duì)角線的長和面積.
4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點(diǎn),且BE=DF.求證:∠AEF=∠AFE.
七、課后練習(xí)
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為 8cm,求菱形的高.
2.如圖,四邊形ABCD是邊長為13cm的菱形,其中對(duì)角線BD長10cm,求(1)對(duì)角線AC的長度;(2)菱形ABCD的面積.
初中數(shù)學(xué)八年級(jí)教案設(shè)計(jì)二
函數(shù)的圖象
重難點(diǎn) 教學(xué)重點(diǎn):
1.認(rèn)清函數(shù)的不同表示方法,知道各自優(yōu)缺點(diǎn).
2.能按具體情況選用適當(dāng)方法.
教學(xué)難點(diǎn):
函數(shù)表示方法的應(yīng)用.
【自主復(fù)習(xí)知識(shí)準(zhǔn)備】
上節(jié)課里已經(jīng)看到或親自動(dòng)手用列表格.寫式子和畫圖象的方法表示了一些函數(shù).這三種表示函數(shù)的方法分別稱為列表法、解析式法和圖象法.
那么,請(qǐng)同學(xué)們思考一下,從前面的例子看,你認(rèn)為三種表示函數(shù)的方法各有什么優(yōu)缺點(diǎn)?在遇到具體問題時(shí),該如何選擇適當(dāng)?shù)谋硎痉椒?
【自主探究知識(shí)應(yīng)用】
例:一水庫的水位在最近5小時(shí)內(nèi)持續(xù)上漲,下表記錄了這5小時(shí)的水位高度.
t/時(shí) 0 1 2 3 4 5 …
y/米 10 10.0 5 10.10 10.15 10.20 10.25 …
1、在平面直角坐標(biāo)系中描出表中數(shù)據(jù)對(duì)應(yīng)的點(diǎn),這些點(diǎn)是否在同一條直線上?由此你能發(fā)現(xiàn)水位變化有什么規(guī)律嗎?
2、水位高度y是否是t的函數(shù)?如果是,試寫出一個(gè)符合表中數(shù)據(jù)的解析式,并畫出這個(gè)函數(shù)的圖像。這個(gè)函數(shù)能表示水位變化的規(guī)律嗎?
3、據(jù)估計(jì)這種上漲的情況還會(huì)持續(xù)2小時(shí),預(yù)測(cè)再過2小時(shí)水位高度將達(dá)到多少米?
總結(jié):這三種表示函數(shù)的方法各有優(yōu)缺點(diǎn)。
1.用解析法表示函數(shù)關(guān)系
優(yōu)點(diǎn):簡(jiǎn)單明了。能從解析式清楚看到兩個(gè)變量之間的全部相依關(guān)系,并且適合進(jìn)行理論分析和推導(dǎo)計(jì)算。
缺點(diǎn):在求對(duì)應(yīng)值時(shí),有時(shí)要做較復(fù)雜的計(jì)算。
2.用列表表示函數(shù)關(guān)系
優(yōu)點(diǎn):對(duì)于表中自變量的每一個(gè)值,可以不通過計(jì)算,直接把函數(shù)值找到,查詢時(shí)很方便。
缺點(diǎn):表中不能把所有的自變量與函數(shù)對(duì)應(yīng)值全部列出,而且從表中看不出變量間的對(duì)應(yīng)規(guī)律。
3.用圖象法表示函數(shù)關(guān)系
優(yōu)點(diǎn):形象直觀,可以形象地反映出函數(shù)關(guān)系變化的趨勢(shì)和某些性質(zhì),把抽象的函數(shù)概念形象化。
缺點(diǎn):從自變量的值常常難以找到對(duì)應(yīng)的函數(shù)的準(zhǔn)確值。
函數(shù)的三種基本表示方法,各有各的優(yōu)點(diǎn)和缺點(diǎn),因此,要根據(jù)不同問題與需要,靈活地采用不同的方法。在數(shù)學(xué)或其他科學(xué)研究與應(yīng)用上,有時(shí)把這三種方法結(jié)合起來使用,即由已知的函數(shù)解析式,列出自變量與對(duì)應(yīng)的函數(shù)值的表格,再畫出它的圖象。
【當(dāng)堂檢測(cè)知識(shí)升華】
甲車速度為20米/秒,乙車速度為25米/秒.現(xiàn)甲車在乙車前面500米,設(shè)x秒后兩車之間的距離為y米.求y隨x(0≤x≤100)變化的函數(shù)解析式,并畫出函數(shù)圖象.
【課后作業(yè)知識(shí)反饋】
課本P83第12題。
我的收獲
(想和老師說)
初中數(shù)學(xué)八年級(jí)教案設(shè)計(jì)三
矩形
教學(xué)目標(biāo):
知識(shí)與技能目標(biāo):
1.掌握矩形的概念、性質(zhì)和判別條件.
2.提高對(duì)矩形的性質(zhì)和判別在實(shí)際生活中的應(yīng)用能力.
過程與方法目標(biāo):
1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動(dòng)和簡(jiǎn)單的說理過程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說理的基本方法.
2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想.
情感與態(tài)度目標(biāo):
1.在操作活動(dòng)過程中,加深對(duì)矩形的的認(rèn)識(shí),并以此激發(fā)學(xué)生的探索精神.2.通過對(duì)矩形的探索學(xué)習(xí),體會(huì)它的內(nèi)在美和應(yīng)用美.
教學(xué)重點(diǎn):矩形的性質(zhì)和常用判別方法的理解和掌握.
教學(xué)難點(diǎn):矩形的性質(zhì)和常用判別方法的綜合應(yīng)用.
教學(xué)方法: 分析啟發(fā)法
教具準(zhǔn)備:像框,平行四邊形框架教具,多媒體課件.
教學(xué)過程設(shè)計(jì):
一. 情境導(dǎo)入:
演示平行四邊形活動(dòng)框架,引入課題.
二.講授新課:
1. 歸納矩形的定義:
問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?(學(xué)生思考、回答.)
結(jié)論:有一個(gè)內(nèi)角是直角的平行四邊形是矩形.
八年級(jí)數(shù)學(xué)上冊(cè)教案2.探究矩形的性質(zhì):
(1). 問題:像框除了“有一個(gè)內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.)
結(jié)論:矩形的四個(gè)角都是直角.
(2). 探索矩形對(duì)角線的性質(zhì):
讓學(xué)生進(jìn)行如下操作后,思考以下問題:(幻燈片展示)
在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上,拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.
?、? 隨著∠α的變化,兩條對(duì)角線的長度分別是怎樣變化的?
?、?當(dāng)∠α是銳角時(shí),兩條對(duì)角線的長度有什么關(guān)系?當(dāng)∠α是鈍角時(shí)呢?
③.當(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)兩條對(duì)角線的長度有什么關(guān)系?
(學(xué)生操作,思考、交流、歸納.)
結(jié)論:矩形的兩條對(duì)角線相等.
(3). 議一議:(展示問題,引導(dǎo)學(xué)生討論 解決.)
?、? 矩形是軸對(duì)稱圖形嗎?如果是,它有幾條對(duì)稱軸?如果不是,簡(jiǎn)述你的理由.
?、? 直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?
(4). 歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會(huì)矩形的“對(duì)稱美”.)
矩形的對(duì)邊平行且相等; 矩形的四個(gè)角都是直角;矩形的對(duì)角線相等且互相平分;矩形是軸對(duì)稱圖形.
例解:(性質(zhì)的運(yùn)用,滲透矩形對(duì)角線的“化歸”功能.)
如圖,在矩形ABCD中,兩條對(duì)角線AC,BD相交于點(diǎn)O,AB=OA=4
厘米.求BD與AD的長.
(引導(dǎo)學(xué)生分析、解答.)
探索矩形的判別條件:(由修理桌子引出)
(1). 想一想:(學(xué)生討論、交流、共同學(xué)習(xí))
對(duì)角線相等的平行四邊形是怎樣的四邊形?為什么?
結(jié)論:對(duì)角線相等的平行四邊形是矩形.
(理由可由師生共同分析,然后用幻燈片展示完整過程.)
(2). 歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納)
有一個(gè)內(nèi)角是直角的平行四邊形是矩形.
對(duì)角線相等的平行四邊形是矩形.
三.課堂練習(xí):(出示P98隨堂練習(xí)題,學(xué)生思考、解答.)
四.新課小結(jié):
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
(師生共同從知識(shí)與思想方法兩方面小結(jié).)
五.作業(yè)設(shè)計(jì):P99習(xí)題4.6第1、2、3題.
板書設(shè)計(jì):
4. 矩 形
矩形的定義:
矩形的性質(zhì):
前面知識(shí)的小系統(tǒng)圖示:
三.矩形的判別條件:
例1
課后反思:在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會(huì)自主探索的方法,自己動(dòng)手猜想驗(yàn)證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計(jì)算也學(xué)會(huì)應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決。總的看來這節(jié)課學(xué)生掌握的還不錯(cuò)。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
猜你喜歡:
1.初中數(shù)學(xué)課教學(xué)教案怎么設(shè)計(jì)
2.初中數(shù)學(xué)教師教案應(yīng)該怎么設(shè)計(jì)