亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 課前預(yù)習(xí) > 高二上冊數(shù)學(xué)預(yù)習(xí)資料

      高二上冊數(shù)學(xué)預(yù)習(xí)資料

      時間: 素雯896 分享

      高二上冊數(shù)學(xué)預(yù)習(xí)資料

        高二上冊數(shù)學(xué)主要學(xué)習(xí)什么內(nèi)容?同學(xué)們要掌握哪些重點知識?想更好地跟上教師的講課進(jìn)度,同學(xué)們不妨提前預(yù)習(xí)。一起來看看學(xué)習(xí)啦小編整理的高二上冊數(shù)學(xué)預(yù)習(xí)資料,希望對您有用。

        高二上冊數(shù)學(xué)預(yù)習(xí)資料第一部分

        一、不等式的性質(zhì)

        1.兩個實數(shù)a與b之間的大小關(guān)系

        2.不等式的性質(zhì)

        (4)(乘法單調(diào)性)

        3.絕對值不等式的性質(zhì)

        (2)如果a>0,那么

        (3)|a?b|=|a|?|b|.

        (5)|a|-|b|≤|a±b|≤|a|+|b|.

        (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

        二、不等式的證明

        1.不等式證明的依據(jù)

        (2)不等式的性質(zhì)(略)

        (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

       ?、赼2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)

        2.不等式的證明方法

        (1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

        用比較法證明不等式的步驟是:作差——變形——判斷符號.

        (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

        (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

        證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

        三、解不等式

        1.解不等式問題的分類

        (1)解一元一次不等式.

        (2)解一元二次不等式.

        (3)可以化為一元一次或一元二次不等式的不等式.

        ①解一元高次不等式;

       ?、诮夥质讲坏仁?

        ③解無理不等式;

       ?、芙庵笖?shù)不等式;

       ?、萁鈱?shù)不等式;

       ?、藿鈳Ы^對值的不等式;

       ?、呓獠坏仁浇M.

        2.解不等式時應(yīng)特別注意下列幾點:

        (1)正確應(yīng)用不等式的基本性質(zhì).

        (2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.

        (3)注意代數(shù)式中未知數(shù)的取值范圍.

        3.不等式的同解性

        (5)|f(x)|0)

        (6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.

        (9)當(dāng)a>1時,af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0ag(x)與f(x)

        高二上冊數(shù)學(xué)預(yù)習(xí)資料第二部分

        四、《不等式》

        解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

        高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

        證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

        直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。

        還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

        五、《立體幾何》

        點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。

        垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

        方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

        立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。

        異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

        六、《平面解析幾何》

        有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。

        笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。

        兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。

        三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

        四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。

        解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)

        七、《排列、組合、二項式定理》

        加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。

        兩個公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。

        排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。

        不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

        關(guān)于二項式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

      2611070