數學選擇題蒙題技巧有哪些
高考各科單選題答案都有一個共同的規(guī)律,既答案A、B、C、D的概率均為25%,所以不會的題蒙C只能做對四分之一的題。下面是學習啦小編為你整理關于數學選擇題蒙題技巧有哪些的內容,希望大家喜歡!
數學選擇題蒙題技巧
1、答案有根號的,不選
2、答案有1的,選
3、三個答案是正的時候,在正的中選
4、有一個是正X,一個是負X的時候,在這兩個中選
5、題目看起來數字簡單,那么答案選復雜的,反之亦然
6、上一題選什么,這一題選什么,連續(xù)有三個相同的則不適合本條
7、答題答得好,全靠眼睛瞟
8、以上都不實用的時候選B
數學選擇題蒙題技巧:中庸之道
即數值優(yōu)先選擇“中間量”選項,選項優(yōu)先考慮bcd。在同一道題中優(yōu)先考慮數值的“中間量”后考慮選項bcd。(如e選項對應數值為中間量時,優(yōu)先從數值入手考慮)出現諸如“以上結果都不對”的選項不予考慮由提干給定信息入手,通過選項特征排除錯誤選項選項基本特征如下:
單值與多值(例如提干出現“偶次方、絕對值、對稱性”等結果出現多值)正值與負值(考前沖刺p12/25題根據提干排除負值)(3)有零與無零
區(qū)間的開與閉(看極端情況能否取等號)正無窮與負無窮(通過極限考慮)
整數與小數(分數)參見考前沖刺p13/28題質數與合數大于與小于整除與不能整除
帶符號與不帶符號(例如根號、平方號等等)
高考數學答題公式整理
一、高中數學公式全集:
常用的誘導公式有以下幾組:
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做題時,將a看成銳角來做會比較好做。
誘導公式記憶口訣
※規(guī)律總結※
上面這些誘導公式可以概括為:
對于π/2*k ±α(k∈Z)的三角函數值,
①當k是偶數時,得到α的同名函數值,即函數名不改變;
②當k是奇數時,得到α相應的余函數值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇變偶不變)
然后在前面加上把α看成銳角時原函數值的符號。
(符號看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4為偶數,所以取sinα。
當α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號為“-”。
所以sin(2π-α)=-sinα
上述的記憶口訣是:
奇變偶不變,符號看象限。
公式右邊的符號為把α視為銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數值的符號可記憶
水平誘導名不變;符號看象限。
#
各種三角函數在四個象限的符號如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.
這十二字口訣的意思就是說:
第一象限內任何一個角的四種三角函數值都是“+”;
第二象限內只有正弦是“+”,其余全部是“-”;
第三象限內切函數是“+”,弦函數是“-”;
第四象限內只有余弦是“+”,其余全部是“-”.
上述記憶口訣,一全正,二正弦,三內切,四余弦
#
還有一種按照函數類型分象限定正負:
函數類型 第一象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
正切 ...........+............—............+............—........
余切 ...........+............—............+............—........
同角三角函數基本關系
同角三角函數的基本關系式
倒數關系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數關系:對角線上兩個函數互為倒數;
(2)商數關系:六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。
(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。
(3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。
猜你感興趣:
數學選擇題蒙題技巧有哪些
上一篇:2017高考數學選擇題答題技巧
下一篇:高考數學選擇題秒殺法