高速加工技術(shù)及其在模具制造中的應(yīng)用
關(guān)鍵詞 高速加工 模具制造 數(shù)控編程
1 引言
20世紀(jì)30年代,德國科學(xué)家Salomon 通過對不同材料進(jìn)行切削試驗,發(fā)現(xiàn)了一個有趣的現(xiàn)象:隨著切削速度的增加,切削溫度隨之增加,單位切削力也隨之增加,而當(dāng)削速度增加到一定臨界值時,如再增加,切削溫度和切削力反而急劇下降。由此,提出了高速加工的概念,所謂高速加工就是指切削速度高于臨界速度的切削加工。對不同的切削材料和不同的切削方式來說,高速切削定義的切削速度的范圍也不同,對于銑削鋁、鎂合金,切削速度大于1000m/min可稱為高速加工,而對于加工鑄鐵或鋼,切削速度大于305m/min就可以稱為高速加工了。隨著技術(shù)的發(fā)展,高速加工的概念也在不斷變化,一般而言,高速銑削除了具有高的切削速度和主軸轉(zhuǎn)速外,還應(yīng)具有高的進(jìn)給速度。如一般精銑加工可達(dá)到5000~15000mm/min 快速進(jìn)給可達(dá)到20000~60000mm/min。與常規(guī)切削加工相比,高速加工有如下一些優(yōu)點,①由于采用高的切削速度和高的進(jìn)給速度,高速加工能在單位時間內(nèi)切除更多的金屬材料,因而切削效率高;②在高速加工的時候,可以采用較少的步距,達(dá)到提高零件表面質(zhì)量的目的,采用高速加工技術(shù),可以使得零件表面達(dá)到磨削的效果;③由于高速加工時切削力大大降低、大部分切削熱被切屑帶走,因而工件的變形大大減少;④高的切削速度意味著高的主軸轉(zhuǎn)速,機(jī)床運轉(zhuǎn)激勵的振動頻率能大大高于工藝系統(tǒng)的固有頻率,因而使機(jī)床和工藝系統(tǒng)的振動小,工作平穩(wěn),這也有利于提高被加工零件的精度和表面質(zhì)量;⑤由于高速加工時,切削溫度較低,單位切削力較小,因而刀具的耐用度能得到提高。
由于這些優(yōu)點,所以高速加工首先在航空航天制造領(lǐng)域得到應(yīng)用。高速加工給航空航天帶來的影響有:
①傳統(tǒng)非常難以加工薄壁零件、柔性材料零件的加工,可以利用高速加工的切削力小、切削溫度低的優(yōu)點,利用高速加工技術(shù)進(jìn)行加工;②高速加工的切削力小、切削效率高,可以采用長徑比很大的刀具進(jìn)行加工,因而傳統(tǒng)的必須設(shè)計為組合件的一些零件可以設(shè)計為整體件了。如蜂窩零件、飛機(jī)的整體框梁等。由于當(dāng)時高速加工屬于尖端的加工技術(shù),并且主要應(yīng)用于航空航天等國防制造領(lǐng)域,因而發(fā)達(dá)國家對高速加工機(jī)床的出口實行管制政策。隨著技術(shù)的進(jìn)步,高速加工技術(shù)不斷成熟,高速加工機(jī)床的成本也不斷下降,使得高速加工技術(shù)已具有向民用制造業(yè)轉(zhuǎn)移的可能性,高速加工技術(shù)在模具制造行業(yè)有廣闊的應(yīng)用前景。根據(jù)高速加工技術(shù)的特點,高速加工技術(shù)應(yīng)用于模具制造業(yè)中主要有如下一些優(yōu)點:①減少加工工序,粗加工后,直接精加工,不需要半精加工;②表面質(zhì)量提高,減少或不需要打磨;③精度提高,減少試模工作量;④可以使用小刀具加工模具細(xì)節(jié),減少電極制作和電加工工序;⑤可以在高精度、大進(jìn)給的方式完成淬火鋼的精加工,且達(dá)到很高的模具表面質(zhì)量,因而可以減少傳統(tǒng)加工因精加工后再淬火引起模具變形。
高速加工技術(shù)主要涉及機(jī)床、刀具、和高速加工數(shù)控編程3個方面。目前,高速加工機(jī)床和刀具技術(shù)已取得了相當(dāng)進(jìn)展,為高速加工技術(shù)得廣泛應(yīng)用奠定了基礎(chǔ)。
2 高速加工機(jī)床
實施高速加工技術(shù),首先應(yīng)有高速加工機(jī)床。高速加工機(jī)床具有不同于傳統(tǒng)數(shù)控機(jī)床的特點
(1)高速加工機(jī)床的主軸部件,要求采用耐高溫、高速、能承受大的負(fù)荷的軸承,同時主軸動平衡性能好,有良好的熱穩(wěn)定性,能夠傳遞足夠的力距和功率且能承受高的離心力。主軸的剛性好、有恒定的力矩。帶有檢測過熱裝置和冷卻裝置。
(2)高速加工機(jī)床的進(jìn)給系統(tǒng)一般采用直線電機(jī)驅(qū)動,能夠?qū)崿F(xiàn)高的進(jìn)給速度,達(dá)到大的加速度。
(3)高速加工機(jī)床采用高性能的數(shù)控系統(tǒng),克服傳統(tǒng)數(shù)控機(jī)床的運算速度低和伺服滯后等缺陷,從而能實現(xiàn)高精密伺服控制、高速數(shù)控運算和全公差控制功能。
(4)高速加工的機(jī)床結(jié)構(gòu)一般通過優(yōu)化設(shè)計采用較輕的移動部件,從而能獲得高的加速度特征。
(5)為了能獲得高的靜態(tài)和動態(tài)剛度,適應(yīng)高速旋轉(zhuǎn)的需要,高速加工機(jī)床對刀具有嚴(yán)格的要求,尤其是對主軸于刀柄的聯(lián)結(jié)有特殊的要求,廣泛使用的HSK刀具一般使用110的小錐度,而不使用
傳統(tǒng)的大錐度刀柄。
(6)高速加工具有數(shù)控代碼預(yù)覽功能,即高速加工機(jī)床的數(shù)控系統(tǒng)在進(jìn)行切削加工的過程中,其讀取的加工代碼可以有一定量的超前,以便于機(jī)床調(diào)整進(jìn)給速度以適應(yīng)刀具軌跡變化的需要。
3 面向高速加工的數(shù)控編程基本原則
高速加工對加工工藝走刀方式有著特殊的要求,高速加工的數(shù)控編程是一項非常復(fù)雜的技術(shù),NC代碼的編程員必須了解高速加工的工藝過程,再編制數(shù)控加工程序時,將這些加工工藝考慮進(jìn)去,一般來說,在利用高速加工技術(shù)進(jìn)行模具加工時,應(yīng)注意如下一些原則:
(1)高速加工時,由于進(jìn)給速度和切削速度很高,應(yīng)當(dāng)避免刀具突然切入和切出工件,避免切削力的突然變化減少沖擊。因而,編程者應(yīng)當(dāng)能夠充分預(yù)見刀具是如何切入工件,如何切出工件,盡量采用平穩(wěn)的切入切出方式,下刀或行間、層間的過渡部分最好采用斜式下刀或圓弧下刀,避免垂直下刀直接接近
工件材料。
(2)在進(jìn)行高速加工時遇到加工方向改變時,機(jī)床為了保證加工的精度,避免過切,通過其預(yù)覽功能,在加工方向進(jìn)行改變時一般會自動進(jìn)行進(jìn)給速度的調(diào)整。但是,當(dāng)加工方向突然改變時,由于機(jī)床的加速度是有限制的,因而,有可能做不到及時的速度調(diào)整,造成過切或(欠切),嚴(yán)重的將造成刀具斷裂。同時,不斷地調(diào)整進(jìn)給速度會嚴(yán)重降低生產(chǎn)效率。因而,編寫高速加工數(shù)控加工程序時,應(yīng)盡量避免加工方向的突然改變。行切的端點采用圓弧連接,避免直線連接、層間應(yīng)采用螺旋式連接,避免直線連接。
(3)要盡可能維持恒定切削負(fù)載,切削深度、進(jìn)給量和切削線速度一定要協(xié)調(diào)好。當(dāng)遇到某處切削深度有可能增加時,應(yīng)降低進(jìn)給速度,以保持恒定的負(fù)載。編寫高速加工的數(shù)控程序時,應(yīng)能充分考慮殘留余量的效應(yīng),最好編程軟件有殘留余量的分析功能,做基于殘留余量的刀具軌跡計算。同時,要注意刀具的實際切削位置,避免切削線速度減低的現(xiàn)象發(fā)生,確實處于正常的高速加工切削速度范圍,應(yīng)盡量使用多坐標(biāo)編程,通過刀軸旋轉(zhuǎn)來維持恒定的切觸點位置,維持恒定的切削速度。
(4)刀具路徑越簡單越好,應(yīng)盡量采用圓弧、曲線等插補功能,傳統(tǒng)的加工模具時采用的密集點數(shù)據(jù)刀具路徑,不太適合于高速加工,一方面數(shù)據(jù)量太大,加重數(shù)控系統(tǒng)的數(shù)據(jù)處理負(fù)擔(dān),造成進(jìn)給速度要適應(yīng)數(shù)控系統(tǒng)的處理速度而減低。另一方面,密集的直線段之間,是C0連續(xù)的,因而數(shù)控系統(tǒng)要不斷地調(diào)整進(jìn)給速度,造成進(jìn)給速度升不上去,嚴(yán)重影響加工效率。
(5)在進(jìn)行高速加工編程時,無論從加工精度還是加工安全性考慮,都應(yīng)該進(jìn)行充分的干涉檢查和加工過程仿真。
(6)注意進(jìn)行多種加工方案的對比分析,選取最佳的切削方案。
4 高速加工對NCP系統(tǒng)的要求
為了能適應(yīng)高速加工數(shù)控編程的要求,針對高速加工的數(shù)控編程系統(tǒng)應(yīng)該滿足相應(yīng)的特殊要求。
(1)NCP系統(tǒng)應(yīng)該具有高的計算編程速度,在高速加工中,一般可采用非常小的進(jìn)給量和切削深度,因而計算量較傳統(tǒng)的數(shù)控編程大得多。同時,由于高速加工對工藝的嚴(yán)格要求一般需要不同方案的對比分析,這更加大了編程工作量,所以要求編程系統(tǒng)應(yīng)該具有高的編程計算速度。
(2)NCP系統(tǒng)應(yīng)該具有全程自動防過切能力和自動的干涉檢查能力。高速加工以高出傳統(tǒng)數(shù)控加工近10倍的切削速度和進(jìn)給速度,一旦發(fā)生過切或干涉,其后果將十分嚴(yán)重。傳統(tǒng)的模具數(shù)控加工編程系統(tǒng)一般采用面向曲面的局部加工,比較容易發(fā)生過切現(xiàn)象,一般都是靠人工選擇干預(yù)的方式來防止,很難保證過切防護(hù)的安全性。另外,高速加工在模具的加工制造中經(jīng)常用于模具細(xì)節(jié)部分的加工,以取代傳統(tǒng)的電極加工,這是,比較容易發(fā)生刀柄的干涉,這就要求NCP編程系統(tǒng)能自動檢查報告。
(3)適合高速加工的NCP系統(tǒng),應(yīng)該能自動進(jìn)行進(jìn)給速率和切削速度的優(yōu)化處理,從而保證在高速加工時的最大的切削效率、最佳的切削條件和切削加工的安全性。
(4)高速加工編程系統(tǒng)應(yīng)有刀具軌跡的編輯優(yōu)化功能,避免多余的空刀和通過對刀具軌跡的鏡向、復(fù)制、移動、旋轉(zhuǎn)等操作避免重復(fù)計算,提高編程效率。
(5)高速加工編程系統(tǒng)應(yīng)該有NURBS曲線插補的編程功能,通過使用NURBS插補編程,減少程序長度。
(6)適合高速加工編程的系統(tǒng)應(yīng)該有符合高速加工工藝要求的加工策略。如豐富的行間、層間連接方法,豐富的進(jìn)刀和退刀方法,基于殘留余量的刀具軌跡計算方法。
(7)適合高速加工變編程系統(tǒng),最好能引入工藝系統(tǒng)的參數(shù)、材料的最佳切削條件、機(jī)床的允許加速度等參數(shù),能夠自動確定允許的加工方向變化的程度(即確定不同曲率半徑的圓弧段允許的進(jìn)給速度的變化程度),軌跡上最小的曲率半徑與進(jìn)給速度的關(guān)系,能夠滿足高速加工對切削線速度的自動的調(diào)整。
5 具有高速加工編程能力的NCP系統(tǒng)簡介
目前有關(guān)適合高速加工編程的NCP(CAM)系統(tǒng)的研究引起了較為廣泛的重視,在許多商用CAD/CAM系統(tǒng),如英國Delcom公司的PowerMill、以色列的Cimatron、美國的Unigraphics PTC公司的Pro/Engineering,CNC公司的MasterCAM等在傳統(tǒng)的NCP模塊中添加了適合于高速加工編程的工藝策略。概括起來主要有如下一些方法:
(1)采用光滑的進(jìn)刀、退刀方式。
在傳統(tǒng)切削輪廓的加工過程中,有法向進(jìn)、退刀,切向進(jìn)退刀和相鄰輪廓的角分線進(jìn)退刀等。而在高速切削加工輪廓的過程中,應(yīng)盡量采取輪廓的切向進(jìn)退刀方式以保證刀具軌跡的平滑。在對曲面進(jìn)行加工時,傳統(tǒng)的數(shù)控加工方法一般采用Z向垂直進(jìn)、退刀,曲面正向與反向的進(jìn)、退刀等方式,而在采用高速
切削的方法進(jìn)行曲面加工時,可采用斜向或螺旋式的進(jìn)刀方式。同時,CAM系統(tǒng)應(yīng)該采用基于知識的加工方法,這樣當(dāng)螺旋式進(jìn)刀切入材料時,系統(tǒng)會自動檢查刀具信息,如果發(fā)現(xiàn)刀具具有盲區(qū)時,螺旋加工半徑就不會無限制減小,從而避免撞刀。這就對加工過程的安全性提供了周全的保障。
(2)采用光滑的移刀方式。
這里所說的移刀方式指的是行切中的行間移刀,環(huán)切中的環(huán)間移刀,等高加工的層間移刀等。應(yīng)用于傳統(tǒng)切削加工方式的CAM軟件中的移刀方式大多不適合高速加工的要求。如在行間移刀時,刀具大多是直接垂直于原來行切方向的法向移刀,導(dǎo)致刀具路徑中存在尖角;在環(huán)切的情況下,環(huán)間移刀也是從原來切削軌跡的法向直接移刀,也會導(dǎo)致刀具軌跡出現(xiàn)不平滑的情況;在等高線加工的層間移刀時,也存在移刀尖角。這些導(dǎo)致加工中心頻繁的預(yù)覽減速影響了加工的效率,從而使高速加工不能真正達(dá)到高速加工的
目的。
在行間切削用量(行間距)較大的情況下,可以采用切圓弧連接的方法進(jìn)行移刀。但是當(dāng)行間距較小時,會由于半徑過小而使圓弧近似地成為一點,進(jìn)而導(dǎo)致行間的移刀變?yōu)橹本€移刀,從而也導(dǎo)致機(jī)床預(yù)覽減速,影響加工的效率。在這種情況下,應(yīng)該采用高爾夫球竿頭式移刀方式。環(huán)切的移刀通常有兩種方式,一種是圓弧切出與切入連接。這種方法的缺點是在加工3D復(fù)雜零件時,由于移刀軌跡直接在兩個刀具路徑之間生成圓弧,在間距較大的情況下,會產(chǎn)生過切,因此該方法一般多用于在加工中所有的刀具路徑都在一個平面內(nèi)的2.5軸加工;另一種是空間螺線式移刀。這種方法由于移刀在空間完成,所以避免了上面方法的缺點。在進(jìn)行等高加工時,切削層之間應(yīng)采用多種螺旋式的移刀方式。
(3)加工殘余分析功能。
高速加工過程中,為了延長刀具的使用壽命和保證加工零件的表面質(zhì)量,應(yīng)盡可能保持穩(wěn)定的切削參數(shù),包括保持切削厚度、進(jìn)給量和切削線速度的穩(wěn)定性。當(dāng)遇到某處切削深度有可能增加時,應(yīng)該降低進(jìn)給速度,因為負(fù)載的變化會引起刀具的偏斜,從而降低加工精度、表面質(zhì)量和縮短刀具壽命。所以,在很多情況下有必要對工件輪廓的某些復(fù)雜部分進(jìn)行預(yù)處理,以使高速運行的精加工小直徑刀具不會因為前道工序使用的大直徑刀具留下的“加工殘余”而導(dǎo)致切削負(fù)載的突然加大。
因此,許多軟件提供了適用于高
速加工的 “加工殘余分析”的功能,這一功能使得CAM系統(tǒng)能夠準(zhǔn)確地知道每次切削后加工殘余所在的位置。這既是保持刀具負(fù)載不變的關(guān)鍵,更是關(guān)系到高速加工成敗的關(guān)鍵。
(4)具有全程自動過切處理及自動刀柄干涉檢查功能。
高速加工的切削速度比傳統(tǒng)的加工方法高出大約10倍多,一旦發(fā)生過切或干涉,其后果不堪設(shè)想。在高速加工中,一個提高加工效率的重要手段是采用殘余量加工或清根加工,也就是采用多次加工或采用系列刀具從大到小分次加工,直至達(dá)到所需尺寸,而避免用小刀一次加工完成。這就要求系統(tǒng)能夠自動提示最小刀具直徑以及最短夾刀長度,并能自動進(jìn)行刀具干涉檢查。此外,在進(jìn)行數(shù)控加工之前,為了能夠讓用戶直觀地判斷加工過程是否發(fā)生過切或刀柄的干涉,CAM系統(tǒng)應(yīng)該提供加工過程的動態(tài)仿真驗證,
即把加工過程中的零件模型、刀具實體、切削加工過程及加工結(jié)果,采用不同的顏色一起動態(tài)顯示出來,模擬零件的實際加工過程,不僅可以觀察加工過程,而且可以檢驗刀具與約束面是否存在干涉或加工過切的情形;更為先進(jìn)的方法是將機(jī)床模型與加工過程仿真結(jié)合在一起,還可以觀察刀具是否與加工零件以外的其它部件(如夾具)發(fā)生干涉碰撞。
(5)采用新的加工方法。
a.基于毛坯殘留知識的加工。
近年來,許多軟件為了適應(yīng)高速加工的需要,引入了“二次粗加工”的思想,該思想正是“毛坯殘留知識”算法的核心?;诿鳉埩糁R的加工,簡單地講就是基于殘留毛坯的加工。在目前使用的許多粗加工方法中,這種方法已經(jīng)得到大家的一致認(rèn)可。它的工作過程是:先執(zhí)行首次粗加工,然后將加工得到的形狀作為生成下次粗加工刀位軌跡的新毛坯。然后根據(jù)新毛坯,使用各種走刀方式(如行切,環(huán)切等)進(jìn)行粗加工。其實整個過程的思想就是始終保持刀具切到材料,減少空走刀,以達(dá)到提高加工效率的目的。在具有這一加工方式的CAM 軟件中,一旦你指定初始毛坯,并設(shè)定之后的加工為基于殘余毛坯的方式,系統(tǒng)在計算下一步刀位時總是基于上一步加工后的殘余毛坯。因為有了當(dāng)前毛坯信息,所以隨后產(chǎn)生的刀具軌跡就可以做到比較優(yōu)化、合理。
b.?dāng)[線加工。
為了提高切削速度,人們提出一種被稱為“擺線”加工的刀位軌跡計算新方法。這種加工方式是使用切削刀具的側(cè)刃來切削被加工材料。“擺線”是圓上一固定點隨著圓沿直線滾動時生成的軌跡。一般來說,擺線是這樣一種曲線:假如曲線A上有一固定點,當(dāng)A沿另一曲線B進(jìn)行無滑動的滾動時,固定點的軌跡就是擺線。“擺線”加工非常適合高速銑削,因為切削的刀具總是沿著一條具有固定半徑的曲線運動。在整個加工過程中,它使刀具運動總能保持一致的進(jìn)給率。
(6)提供NURBS插補指令生成技術(shù)。
傳統(tǒng)的模具型面數(shù)控加工時經(jīng)常采用直線插補和圓弧插補技術(shù),在高速加工中已不太適用,一則是因為數(shù)據(jù)量大,增加機(jī)床數(shù)控處理時間,一則是不便機(jī)床進(jìn)行進(jìn)給速度控制,影響加速加工的效率。許多軟件和機(jī)床提供NURBS曲線插補技術(shù) 一方面大大降低了數(shù)控程序的數(shù)據(jù)量,一方面光滑了數(shù)控加工刀具軌跡。
6 結(jié)束語
高速加工技術(shù)在模具制造中有廣泛的應(yīng)用前景,高速加工機(jī)床和數(shù)控技術(shù)日趨成熟。面向高速加工技術(shù)的數(shù)控編程技術(shù)的發(fā)展顯得相對落后,
了制約高速加工技術(shù)在模具制造中廣泛應(yīng)用的瓶頸。值得高興的是,目前眾多的CAM技術(shù)研究者和各大CAD/CAM軟件開發(fā)商正在對高速加工的數(shù)控編程技術(shù)進(jìn)行廣泛而深入的研究,相信在不遠(yuǎn)的將來,完全適合模具的高速加工的數(shù)控編程系統(tǒng)就會出現(xiàn)。