亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 腦力開發(fā) > 靈感 >

      怎樣培養(yǎng)學生的數學靈感

      時間: 斯祺1212 分享

        如何培養(yǎng)數學靈感,下面是學習啦的小編為你們整理的文章,希望你們能夠喜歡

        如何培養(yǎng)數學靈感

        我國著名科學家錢學森說:“靈感,也就是人在科學或藝術創(chuàng)作中的高潮,突然出現的、瞬時即逝的短暫思維過程.”唯物論者也承認靈感,但它不是上帝的恩賜,而是人們在實踐活動中逐步形成或培養(yǎng)出來的一種不同常人的高效率、大跨度創(chuàng)造性思維的表現.靈感是緊張的創(chuàng)造性活動和長期艱苦勞動的結果.

        數學靈感是人腦對數學對象結構關系的一種突發(fā)性的領悟.在解答數學難題時,通常會遇到這樣的情況:盡管從多角度、用各種方法去進行探索,但百思不得其解.可正在“山窮水盡疑無路”之際,靈感出現了,從而創(chuàng)造了“柳暗花明又一村”的美的境界.

        靈感與創(chuàng)造思維、靈感與數學發(fā)現究竟有何聯(lián)系?我們可看看下面幾位數學家的數學靈感與數學發(fā)現的情況.

        法國數學家笛卡兒,早就有把相互獨立的代數與幾何結合起來的愿望,經過長時期的思考,但未找到合適的方法.1619年隨軍服務時他仍在思考.11月9日,在多瑙河畔的諾伊堡,他幾天來整日沉迷在思考之中而不得其解,入睡后連作數夢,夢中迷迷糊糊地想到引入直角坐標系的方法.第二天,也即是11月10日清晨,醒后立即將夢中所得加以整理,終于創(chuàng)造了解析幾何學,笛卡爾獲得了成功,但他醞釀時間為1617~1619年,約為兩年的時間.

        法國著名數學家龐加萊在談到他發(fā)現富克斯函數的變換方法時回憶說:“1880年有一次我離開當時居住的卡昂去作一次由礦業(yè)學校主辦的地質考察旅行.旅途的奔波使我忘掉了我的數學工作,抵達庫特塞斯后,我們乘公共馬車到各處去轉轉,正當我跨上踏板的瞬間,腦子里突然出現了一個想法,即我曾用來定義富克斯函數的諸變換跟非歐幾何中的諸變換是一致的.”龐加萊回到住址后,馬上把這一結果加以證明.這是在長時間緊張工作之后,思想放松時靈感的突然閃現,是經過了約一年時間的苦思之后才獲得成功的.

        被稱為數學王子的高斯為證明某一算術定理,曾苦思冥想達兩年之久,后來突然得到一個想法,使他獲得成功.高斯回憶說:“終于在兩天前我成功了……像閃電一樣,謎一下解開了.我自己也說不清楚是什么導線把原先的知識和我成功的東西連接起來.”盡管解開這個謎的想法是突然來的,但高斯本人經過兩年的艱苦努力才為這個成功的到來做好了準備.

        由以上對三位數學家數學靈感的出現而導致數學發(fā)現的描述,可以看出這種在長時期持續(xù)勞動后的某時刻出現的“突然領悟”是一種非邏輯的高層次的創(chuàng)造活動,亦即靈感思維活動.

        靈感是不能靠偶然的機遇、守株待兔式的消極等待可以得到的.必須是執(zhí)著追求、鍥而不舍、百折不撓,才能有成功的一天.所謂“觸景生情”“靈機一動”“眉頭一皺,計上心來”,都是經過長期堅持不懈地創(chuàng)造性勞動而“偶然得之”的.巴斯加說:“機遇只偏愛有準備的頭腦.”恰恰道出了此中的真諦.

        如何培養(yǎng)數學靈感(2)

        教學過程中,經常有學生會問這么一個問題:老師,當你拿到一道題目的時候,為什么你能夠想到用這個方法?

        其實,這是關于數學靈感的一個話題。寫作,搞藝術經常講到靈感;同樣在數學學習過程中,靈感也非常重要,是分析和解決實際問題能力的一個重要手段,對于開發(fā)學生的智力是一個不可忽視的因素。因此,在數學教學中,重視靈感能力的培養(yǎng),對培養(yǎng)學生的創(chuàng)新精神和創(chuàng)造能力是至關重要的。

        數學是一門思維學科,在我們目前的數學教育中,如何設計、滲透數學的靈感教育是一項重要的改革,我們要以培養(yǎng)學生的創(chuàng)造性思維為主,把傳授知識和訓練思維能力統(tǒng)一起來,培養(yǎng)適應社會需求的創(chuàng)造性人才。

        通過一段時間的數學的研究性學習,針對”數學靈感的培養(yǎng)”這一課題進行資料的查找與探討總結。我們發(fā)現,靈感真的是學習的關鍵元素,只有以靈感作為學習的基礎與前提,才能更好地開拓自己的思維,挖掘出自己內在所具有的天賦。因此,我們在課堂內外應注重學習數學靈感的培養(yǎng)。我們可以從下列各個方面入手來培養(yǎng)數學靈感:

        1、 重視數學基本問題和基本方法的牢固掌握和應用,以形成并豐富數學知識組塊。

        靈感不是靠“機遇”,直覺的獲得雖然是有偶然性,但決不是無緣無故的憑空臆想,而是以扎實的知識為基礎。若沒有深厚的功底,是不會迸發(fā)出思維的火花。所以對數學基本問題和基本方法的牢固掌握和應用是很重要的。所謂知識組塊又稱知識反應塊。它們由數學中的定義、定理、公式、法則等組成,并集中地反映在一些基本問題,典型題型或方法模式。許多其他問題的解決往往可以歸結成一個或幾個基本問題,化為某類典型題型,或者運用某種方式模式。這些知識組塊由于不一定以定理、性質、法則等形式出現,而是分布于例題或問題之中,因此不容易引起師生的特別重視,往往被淹沒在題海之中,如何將它們篩選出來加以精練是數學中值得研究的一個重要課題。

        在解數學題時,主體在明了題意并抓住題目條件或結論的特征之后,往往一個念頭閃現就描繪出了解題的大致思路。這是尖子學生經常會碰到的事情,在他們大腦中貯存著比一般學生更多的知識組塊和形象直感,因此快速反應的數學靈感就應運而生。

        2、強調數形結合,發(fā)展幾何思維與類幾何思維。 數學形象直感是數學靈感思維的源泉之一,而數學形象直感是一種幾何直覺或空間觀念的表現,對于幾何問題要培養(yǎng)幾何自身的變換、變形的直觀感受能力。對于非幾何問題則要用幾何眼光去審視分析就能逐步過渡到類幾何思維。

        3、重視整體分析,提倡塊狀思維。

        在解決數學問題時要教會學習從宏觀上進行整體分析,抓住問題的框架結構和本質關系,從思維策略的角度確定解題的入手方向和思路。在整體分析的基礎上進行大步驟思維,使學生在具有相應的知識基礎和已達到一定熟練程度的情況下能變更和化歸問題,分析和辨認組成問題的知識集成塊,培養(yǎng)思維跳躍的能力。在練習中注意方法的探求,思路的尋找和類型的識別,養(yǎng)成簡縮邏輯推理過程,迅速作出直覺判斷的洞察能力

        4、鼓勵大膽猜測,養(yǎng)成善于猜想的數學思維習慣。

        數學猜想是在數學證明之前構想數學命題思維過程。“數學事實首先是被猜想,然后才被證實。”猜想是一種合情推理,它與論證所用的邏輯推理相輔相成。對于未給出結論的數學問題,猜想的形成有利于解題思路的正確誘導;對于已有結論的問題,猜想也是尋求解題思維策略的重要手段。數學猜想是有一定規(guī)律的,并且要以數學知識的經驗為支柱。但是培養(yǎng)敢于猜想、善于探索的思維習慣是形成數學靈感,發(fā)展數學思維,獲得數學發(fā)現的基本素質。因此,在數學教學中,既要強調思維的嚴密性,結果的正確性,也不應忽視思維的探索性和發(fā)現性,即應重視數學直覺猜想的合理性和必要性。

        以上為數學靈感培養(yǎng)的一部分。其實,我認為沒有萬能的教學法,任何有益的方法都只對那些有學習積極性而苦于學習方法不好,特別缺乏思維方法的學生才起作用。數學是一門思維學科,在我們目前的數學教育中,如何設計、滲透數學的靈感教育是一項重要的改革,我們要以培養(yǎng)學生的創(chuàng)造性思維為主,把傳授知識和訓練思維能力統(tǒng)一起來,培養(yǎng)適應社會需求的創(chuàng)造性人才。

      4502134