亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 新聞資訊 > 學習資訊 > 高考數學的答題思路是怎么樣的

      高考數學的答題思路是怎么樣的

      時間: 睿檸1003 分享

      高考數學的答題思路是怎么樣的

        高考數學,最重要的就是思路的清晰與否,只有正確的答題思路,才能帶你走向正確答案。下面是小編分享的高考數學答題思路,一起來看看吧。

        高考數學答題思路

        1、函數與方程思想

        函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程或不等式模型去解決問題。同學們在解題時可利用轉化思想進行函數與方程間的相互轉化。

        2、數形結合思想

        中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學們在解答數學題時,能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。

        3、特殊與一般的思想

        用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。

        4、極限思想解題步驟

        極限思想解決問題的一般步驟為:一、對于所求的未知量,先設法構思一個與它有關的變量;二、確認這變量通過無限過程的結果就是所求的未知量;三、構造函數(數列)并利用極限計算法則得出結果或利用圖形的極限位置直接計算結果。

        5、分類討論思想

        同學們在解題時常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數學概念本身具有多種情形,數學運算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。建議同學們在分類討論解題時,要做到標準統(tǒng)一,不重不漏。

        高考數學得分技巧

        在三門主科中,只有數學最容易拉開距離,也最為同學、家長所關心。由于高考的特殊性,有些同學在考試開始的前5分鐘就已亂了方寸,導致誰都不希望的結果。

        1.做好前面5個小題。不要小看這幾個小題,對穩(wěn)定情緒,鼓舞士氣有很大作用。有些同學就是由于前面?zhèn)€別小題做得不順,影響整個考試情緒。而一旦前面發(fā)揮得好,會感到一路順手,所向披靡。

        2.認真審題。由于前面題目簡單,想抓緊時間做完,以便騰出時間做后面的難題,結果把題目看錯了,非??上?。如2000年上海卷第1題就有不少同學犯這種低級錯誤。

        3.確實遇到暫時不會做的題目,可以放一放,但很多同學做不到。擔心前面就有不會做,后面肯定更難,從而心慌手抖,頭腦一片空白。

        要知道難易對大家都一樣,你不會別人可能也不會。遇到暫時不會做的題目要敢于“合理放棄”,必要時你可以抬頭看看,周圍的人還在做這道難題,讓他們浪費時間吧,我去做會做的題目。這種心理暗示會減少你的壓力,等會做的做完了,狀態(tài)很好,勢如破竹,再回過來,有時一看就會了,這就能使你出色發(fā)揮。

        4.對多數同學而言,最后兩題的最后一問是“用不著”做的,如果前面不細心失誤而把時間放攻難題上是得不償失,犯了策略性錯誤。

        5.心理素質不太好的同學,不一定要先看整個試卷,因為遇到難題會緊張。

        高中數學學習答題技巧

        (一)、充分聯想回憶基本知識和題型:

        按照波利亞的觀點,在解決問題之前,我們應充分聯想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結論,從而解決現有的問題。

        (二)、全方位、多角度分析題意:

        對于同一道數學題,常??梢圆煌膫让妗⒉煌慕嵌热フJ識。因此,根據自己的知識和經驗,適時調整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。

        (三)恰當構造輔助元素:

        數學中,同一素材的題目,常常可以有不同的表現形式;條件與結論(或問題)之間,也存在著多種聯系方式。因此,恰當構造輔助元素,有助于改變題目的形式,溝通條件與結論(或條件與問題)的內在聯系,把陌生題轉化為熟悉題。

        數學解題中,構造的輔助元素是多種多樣的,常見的有構造圖形(點、線、面、體),構造算法,構造多項式,構造方程(組),構造坐標系,構造數列,構造行列式,構造等價性命題,構造反例,構造數學模型等等。


      猜你感興趣:

      1.高考數學必知的六個答題技巧

      2.高考數學學霸總結的答題技巧

      3.2017年高考數學答題應試技巧總結

      4.高考數學常用答題技巧

      3788584