亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>視頻教程>數(shù)學(xué)教程>

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)

      時(shí)間: 航就0 分享

      教案對(duì)于教師在熟悉不過(guò)吧,看一下怎么寫(xiě)吧。作為一名辛苦耕耘的教育工作者,很有必要精心設(shè)計(jì)一份教案,編寫(xiě)教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)?a href='http://lpo831.com/way/jiaoxue/' target='_blank'>教學(xué)方法。下面是小編收集整理的高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì),歡迎大家分享。

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇1

      教學(xué)準(zhǔn)備

      教學(xué)目標(biāo)

      1、掌握平面向量的數(shù)量積及其幾何意義;

      2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

      3、了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;

      4、掌握向量垂直的條件。

      教學(xué)重難點(diǎn)

      教學(xué)重點(diǎn):平面向量的數(shù)量積定義

      教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

      教學(xué)過(guò)程

      1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

      則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

      并規(guī)定0向量與任何向量的數(shù)量積為0.

      ×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎??什么時(shí)候?yàn)樨?fù)?

      2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

      (1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定。

      (2)兩個(gè)向量的數(shù)量積稱(chēng)為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分。符號(hào)“· ”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替。

      (3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因?yàn)槠渲衏osq有可能為0.

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇2

      一、教材

      《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的.內(nèi)容,直線(xiàn)和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線(xiàn)的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀(guān)點(diǎn)揭示了知識(shí)的發(fā)生過(guò)程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類(lèi)討論、類(lèi)比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

      二、學(xué)情

      學(xué)生初中已經(jīng)接觸過(guò)直線(xiàn)與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過(guò)程中掌握了點(diǎn)的坐標(biāo)、直線(xiàn)的方程、圓的方程以及點(diǎn)到直線(xiàn)的距離公式;掌握利用方程組的方法來(lái)求直線(xiàn)的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

      三、教學(xué)目標(biāo)

      (一)知識(shí)與技能目標(biāo)

      能夠準(zhǔn)確用圖形表示出直線(xiàn)與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線(xiàn)的距離的方法簡(jiǎn)單判斷出直線(xiàn)與圓的關(guān)系。

      (二)過(guò)程與方法目標(biāo)

      經(jīng)歷操作、觀(guān)察、探索、總結(jié)直線(xiàn)與圓的位置關(guān)系的判斷方法,從而鍛煉觀(guān)察、比較、概括的邏輯思維能力。

      (三)情感態(tài)度價(jià)值觀(guān)目標(biāo)

      激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。

      四、教學(xué)重難點(diǎn)

      (一)重點(diǎn)

      用解析法研究直線(xiàn)與圓的位置關(guān)系。

      (二)難點(diǎn)

      體會(huì)用解析法解決問(wèn)題的數(shù)學(xué)思想。

      五、教學(xué)方法

      根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀(guān)、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺(tái),通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀(guān),為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問(wèn)題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。

      六、教學(xué)過(guò)程

      (一)導(dǎo)入新課

      教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?

      教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線(xiàn)與圓的位置關(guān)系,將所想到的航行路線(xiàn)轉(zhuǎn)化成數(shù)學(xué)簡(jiǎn)圖,即相交、相切、相離。

      設(shè)計(jì)意圖:在已有的知識(shí)基礎(chǔ)上,提出新的問(wèn)題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。

      (二)新課教學(xué)——探究新知

      教師提問(wèn)如何判斷直線(xiàn)與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的贊賞,又要有對(duì)錯(cuò)誤見(jiàn)解的分析及對(duì)該學(xué)生的鼓勵(lì)。

      判斷方法:

      (1)定義法:看直線(xiàn)與圓公共點(diǎn)個(gè)數(shù)

      即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

      (2)比較法:圓心到直線(xiàn)的距離d與圓的半徑r做比較,

      (三)合作探究——深化新知

      教師進(jìn)一步拋出疑問(wèn),對(duì)比兩種方法,由學(xué)生觀(guān)察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線(xiàn)與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

      已知直線(xiàn)3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

      讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

      當(dāng)已知了直線(xiàn)與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線(xiàn)的距離d,他的本質(zhì)是點(diǎn)到直線(xiàn)的距離,便可以直接利用點(diǎn)到直線(xiàn)的距離公式求d。類(lèi)比前面所學(xué)利用直線(xiàn)方程求兩直線(xiàn)交點(diǎn)的方法,聯(lián)立直線(xiàn)與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數(shù)確定直線(xiàn)與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。

      (四)歸納總結(jié)——鞏固新知

      為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

      可由方程組的解的不同情況來(lái)判斷:

      當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相交;

      當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相切;

      當(dāng)方程組沒(méi)有實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相離。

      活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線(xiàn)與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。

      (五)小結(jié)作業(yè)

      在小結(jié)環(huán)節(jié),我會(huì)以口頭提問(wèn)的方式:

      (1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

      (2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?

      設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。

      作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡(jiǎn)捷,明確本節(jié)課主要用比較d與r的關(guān)系來(lái)解決這類(lèi)問(wèn)題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。

      七、板書(shū)設(shè)計(jì)

      我的板書(shū)本著簡(jiǎn)介、直觀(guān)、清晰的原則,這就是我的板書(shū)設(shè)計(jì)。

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇3

      教學(xué)目標(biāo)

      1.使學(xué)生掌握的概念,圖象和性質(zhì).

      (1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域.

      (2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫(huà)出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì).

      (3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫(huà)出形如的圖象.

      2.通過(guò)對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀(guān)察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.

      3.通過(guò)對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題.教學(xué)建議

      教材分析

      (1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見(jiàn)函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.

      (2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.

      (3)是學(xué)生完全陌生的一類(lèi)函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類(lèi)函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.

      教法建議

      (1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.

      (2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類(lèi)討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái).

      關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線(xiàn),要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫(huà)圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇4

      【教學(xué)目標(biāo)】

      1.知識(shí)與技能

      (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

      (2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:

      (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。

      2.過(guò)程與方法

      在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀(guān)察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

      3.情感、態(tài)度與價(jià)值觀(guān)

      通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀(guān)察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

      【教學(xué)重點(diǎn)】

      ①等差數(shù)列的概念;

      ②等差數(shù)列的通項(xiàng)公式

      【教學(xué)難點(diǎn)】

      ①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;

      ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.

      【學(xué)情分析】

      我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類(lèi)學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

      【設(shè)計(jì)思路】

      1、教法

      ①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

      ②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.

      ③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

      2、學(xué)法

      引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

      【教學(xué)過(guò)程】

      一、創(chuàng)設(shè)情境,引入新課

      1、從0開(kāi)始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

      2、水庫(kù)管理人員為了保證優(yōu)質(zhì)魚(yú)類(lèi)有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚(yú).如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?

      3、我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢(qián),年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

      教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).

      學(xué)生:

      ①0,5,10,15,20,25,….

      ②18,15.5,13,10.5,8,5.5.

      ③10072,10144,10216,10288,10360.

      (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

      二、觀(guān)察歸納,形成定義

      ①0,5,10,15,20,25,….

      ②18,15.5,13,10.5,8,5.5.

      ③10072,10144,10216,10288,10360.

      思考1上述數(shù)列有什么共同特點(diǎn)?

      思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

      思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?

      教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

      學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

      教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

      (設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀(guān)察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開(kāi)始抓?。骸皬牡诙?xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

      三、舉一反三,鞏固定義

      1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

      (1)1,1,1,1,1;

      (2)1,0,1,0,1;

      (3)2,1,0,-1,-2;

      (4)4,7,10,13,16.

      教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.

      注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.

      (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

      2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

      (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

      四、利用定義,導(dǎo)出通項(xiàng)

      1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

      2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

      教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.

      (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀(guān)察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

      五、應(yīng)用通項(xiàng),解決問(wèn)題

      1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

      2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

      3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)

      教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

      學(xué)生:教師叫學(xué)生代表總結(jié)此類(lèi)題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

      (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)

      六、反饋練習(xí):教材13頁(yè)練習(xí)1

      七、歸納總結(jié):

      1、一個(gè)定義:

      等差數(shù)列的定義及定義表達(dá)式

      2、一個(gè)公式:

      等差數(shù)列的通項(xiàng)公式

      3、二個(gè)應(yīng)用:

      定義和通項(xiàng)公式的應(yīng)用

      教師:讓學(xué)生思考整理,找?guī)讉€(gè)代表發(fā)言,最后教師給出補(bǔ)充

      (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

      【設(shè)計(jì)反思

      本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀(guān)察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇5

      教學(xué)目標(biāo):

      1、了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

      2、會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù)。

      3、在嘗試、探索求反函數(shù)的過(guò)程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí)。

      4、進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀(guān)點(diǎn)分析問(wèn)題,培養(yǎng)抽象、概括的能力。

      教學(xué)重點(diǎn):

      求反函數(shù)的方法。

      教學(xué)難點(diǎn):

      反函數(shù)的概念。

      教學(xué)過(guò)程:

      一、創(chuàng)設(shè)情境,引入新課

      1、復(fù)習(xí)提問(wèn)

      ①函數(shù)的概念

      ②y=f(x)中各變量的意義

      2、同學(xué)們?cè)谖锢碚n學(xué)過(guò)勻速直線(xiàn)運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù)。在這種情況下,我們說(shuō)t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。

      3、板書(shū)課題

      由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。

      二、實(shí)例分析,組織探究

      1、問(wèn)題組一:

      (用投影給出函數(shù)與;與()的圖象)

      (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線(xiàn)y=x對(duì)稱(chēng);與()的圖象也關(guān)于直線(xiàn)y=x對(duì)稱(chēng)。是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算。同樣,與()也互為逆運(yùn)算。)

      (2)由,已知y能否求x?

      (3)是否是一個(gè)函數(shù)?它與有何關(guān)系?

      (4)與有何聯(lián)系?

      2、問(wèn)題組二:

      (1)函數(shù)y=2x1(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?

      (2)函數(shù)(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?

      (3)函數(shù)()的定義域與函數(shù)()的值域有什么關(guān)系?

      3、滲透反函數(shù)的概念。

      (教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))

      從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力。

      通過(guò)這兩組問(wèn)題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問(wèn)題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀(guān)的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ)。

      三、師生互動(dòng),歸納定義

      1、(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)

      函數(shù)y=f(x)(x∈A)中,設(shè)它的值域?yàn)镃。我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用y把x表示出來(lái),得到x=j(y)。如果對(duì)于y在C中的任何一個(gè)值,通過(guò)x=j(y),x在A(yíng)中都有的值和它對(duì)應(yīng),那么,x=j(y)就表示y是自變量,x是自變量y的函數(shù)。這樣的函數(shù)x=j(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作:??紤]到"用x表示自變量,y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫(xiě)成。

      2、引導(dǎo)分析:

      1)反函數(shù)也是函數(shù);

      2)對(duì)應(yīng)法則為互逆運(yùn)算;

      3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來(lái)說(shuō)不一定有反函數(shù);

      4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

      5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

      6)要理解好符號(hào)f;

      7)交換變量x、y的原因。

      3、兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系

      (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)

      4、函數(shù)與其反函數(shù)的關(guān)系

      函數(shù)y=f(x)

      函數(shù)

      定義域

      A

      C

      值域

      C

      A

      四、應(yīng)用解題,總結(jié)步驟

      1、(投影例題)

      【例1】求下列函數(shù)的反函數(shù)

      (1)y=3x—1(2)y=x1

      【例2】求函數(shù)的反函數(shù)。

      (教師板書(shū)例題過(guò)程后,由學(xué)生總結(jié)求反函數(shù)步驟。)

      2、總結(jié)求函數(shù)反函數(shù)的步驟:

      1°由y=f(x)反解出x=f(y)。

      2°把x=f(y)中x與y互換得。

      3°寫(xiě)出反函數(shù)的定義域。

      (簡(jiǎn)記為:反解、互換、寫(xiě)出反函數(shù)的定義域)【例3】

      (1)有沒(méi)有反函數(shù)?

      (2)的反函數(shù)是________。

      (3)(x<0)的反函數(shù)是__________。

      在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù)。在剖析定義的過(guò)程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語(yǔ)言有更好的把握。

      通過(guò)動(dòng)畫(huà)演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解。

      通過(guò)對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。

      題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn)。并體現(xiàn)了對(duì)定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。

      五、鞏固強(qiáng)化,評(píng)價(jià)反饋

      1、已知函數(shù)y=f(x)存在反函數(shù),求它的反函數(shù)y=f(x)

      (1)y=—2x3(xR)(2)y=—(xR,且x)

      (3)y=(xR,且x)

      2、已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

      五、反思小結(jié),再度設(shè)疑

      本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟?;榉春瘮?shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究。

      (讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)

      進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度。具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性。"問(wèn)題是數(shù)學(xué)的心臟"學(xué)生帶著問(wèn)題走進(jìn)課堂又帶著新的問(wèn)題走出課堂。

      六、作業(yè)

      習(xí)題2.4第1題,第2題

      進(jìn)一步鞏固所學(xué)的知識(shí)。

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇6

      [學(xué)習(xí)目標(biāo)]

      (1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

      (2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

      (3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。

      [學(xué)習(xí)重點(diǎn)]

      兩角和與差的正弦、余弦、正切公式

      [學(xué)習(xí)難點(diǎn)]

      余弦和角公式的推導(dǎo)

      [知識(shí)結(jié)構(gòu)]

      1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過(guò)程見(jiàn)課本)

      2、通過(guò)下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

      3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

      4、關(guān)于公式的正用、逆用及變用

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇7

      一、教學(xué)目標(biāo)

      1、知識(shí)與技能目標(biāo):認(rèn)識(shí)平面直角坐標(biāo)系,了解點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系;

      2、過(guò)程與方法目標(biāo):通過(guò)研究平面直角坐標(biāo)中數(shù)與點(diǎn)的對(duì)應(yīng)關(guān)系,能根據(jù)坐標(biāo)描出點(diǎn)的位置;

      3、情感態(tài)度與價(jià)值觀(guān)目標(biāo):感受代數(shù)與幾何問(wèn)題的相互轉(zhuǎn)換。體會(huì)品面直角坐標(biāo)系在解決實(shí)際問(wèn)題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。

      二、教學(xué)重難點(diǎn)

      重點(diǎn):理解平面直角坐標(biāo)中點(diǎn)與數(shù)的一一對(duì)應(yīng)關(guān)系;

      難點(diǎn):根據(jù)坐標(biāo)描出點(diǎn)的位置,以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。

      三、教學(xué)用具

      教師準(zhǔn)備四張大的紙質(zhì)坐標(biāo)格子。

      四、教學(xué)過(guò)程:

      (一)溫故知新,導(dǎo)入新課

      游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對(duì),大家學(xué)習(xí)積極性很高,今天老師先考考你們,看你們掌握了多少。

      我們將教室里的座位分為八列七排。a排b號(hào)記做有序數(shù)對(duì)(a,b),同學(xué)們先找準(zhǔn)自己的數(shù)對(duì)號(hào)。聽(tīng)老師報(bào)數(shù)對(duì),若是你自己的數(shù)對(duì)號(hào),就快速站起來(lái)。反應(yīng)太慢和站錯(cuò)了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。

      我們可以發(fā)現(xiàn),通過(guò)教室平面內(nèi)的有序數(shù)對(duì),可以唯一的確定與之對(duì)應(yīng)的同學(xué)。

      (二)新課教學(xué)

      課本例子:我們知道數(shù)軸上的點(diǎn)可以用一個(gè)數(shù)來(lái)表示,這個(gè)數(shù)叫做這個(gè)點(diǎn)的坐標(biāo)。例如點(diǎn)A數(shù)軸上的坐標(biāo)是—4,點(diǎn)B數(shù)軸上的坐標(biāo)是2;我們說(shuō)坐標(biāo)是3。5的點(diǎn),也可以在數(shù)軸上唯一確定。

      教師提問(wèn)1:類(lèi)似于數(shù)軸確定直線(xiàn)上點(diǎn)的位置,能不能找到一種方法來(lái)確定平面內(nèi)點(diǎn)的位置呢?平面內(nèi)給出任意點(diǎn)A、B、C、D,我們?cè)趺创_定這些點(diǎn)的位置

      學(xué)生活動(dòng):小a說(shuō)可以像教室座位一樣給任意點(diǎn)編一個(gè)橫排縱排的號(hào),小B說(shuō)我們可以每個(gè)點(diǎn)列一個(gè)數(shù)軸···

      教師活動(dòng):引導(dǎo)學(xué)生思考,怎么才能用同一標(biāo)準(zhǔn),方便的確定每一點(diǎn)的位置?

      結(jié)合橫縱排編號(hào)以及數(shù)軸,我們可以綜合考慮,引出一個(gè)橫縱的數(shù)軸?

      得出結(jié)論:我們可以在平面內(nèi)畫(huà)兩條相互垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系,水平的數(shù)軸稱(chēng)為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱(chēng)為y軸或縱軸,取向上為正方向;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      那有了這樣的平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用之前學(xué)的有序數(shù)對(duì)來(lái)表示了。例如:由A分別向x軸和y軸作垂線(xiàn)。垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是4,我們說(shuō)A的坐標(biāo)是3,縱坐標(biāo)是4,有序數(shù)對(duì)(3,4)就叫做A的坐標(biāo),記作A(3,4)

      教師提問(wèn)2:同學(xué)們按照這種做法,在坐標(biāo)紙上標(biāo)出B、C、D的坐標(biāo)。

      教師活動(dòng):走下講臺(tái),關(guān)注學(xué)生的匯坐標(biāo)過(guò)程方法,指出學(xué)生出現(xiàn)問(wèn)題的地方,并予以改正。

      教師提問(wèn)3:在橫縱坐標(biāo)軸上各標(biāo)一點(diǎn)E、F,問(wèn):坐標(biāo)原點(diǎn)以及這兩點(diǎn)的坐標(biāo)是什么?

      教師活動(dòng):引導(dǎo)學(xué)生思考?xì)w納坐標(biāo)軸上的點(diǎn)的坐標(biāo)的特點(diǎn)。

      得出結(jié)論:原點(diǎn)的坐標(biāo)是(0,0),x軸上的點(diǎn)的坐標(biāo)的縱坐標(biāo)為0;y軸上的點(diǎn)的坐標(biāo)的橫坐標(biāo)為0。

      (三)課程鞏固

      師生互動(dòng):與學(xué)生一起回憶平面直角坐標(biāo)系的各部分的意義,平面內(nèi)的點(diǎn)怎么對(duì)應(yīng)坐標(biāo),以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。

      “練一練”:

      在黑板上貼出四張事先準(zhǔn)備好的紙質(zhì)坐標(biāo)格子,在上面標(biāo)出任意的ABCDEFG等點(diǎn),每組我點(diǎn)一個(gè)按坐標(biāo)序列對(duì),對(duì)應(yīng)的同學(xué)上黑板,來(lái)描出各點(diǎn)的坐標(biāo)。對(duì)一個(gè)加一分,錯(cuò)一個(gè)扣一分,得分相同的看用時(shí),時(shí)間短者勝,過(guò)程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。

      (1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來(lái)描點(diǎn)。

      教師活動(dòng):規(guī)范課堂氣氛,公平的評(píng)判,對(duì)于表現(xiàn)好的小組代表予以表?yè)P(yáng),表現(xiàn)稍遜的學(xué)生不要?dú)怵H,給予鼓勵(lì),爭(zhēng)取下一次可以獲勝。

      (四)小結(jié)作業(yè)

      思考平面直角坐標(biāo)系中坐標(biāo)與點(diǎn)的對(duì)應(yīng)關(guān)系,如何由坐標(biāo)值確定點(diǎn)的位置。下節(jié)課我們會(huì)探討這個(gè)問(wèn)題。

      五、板書(shū)設(shè)計(jì)

      平面直角坐標(biāo)系:平面內(nèi)畫(huà)兩條相互垂直、原點(diǎn)重合的數(shù)軸組成

      水平的數(shù)軸稱(chēng)為x軸或橫軸,習(xí)慣上取向右為正方向;

      豎直的數(shù)軸稱(chēng)為y軸或縱軸,取向上為正方向;

      兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      高中數(shù)學(xué)必修優(yōu)秀教學(xué)設(shè)計(jì)篇8

      一、教材分析

      1、教材的地位和作用

      算術(shù)平均數(shù)與幾何平均數(shù)是不等式這一章的核心,對(duì)于不等式的證明及利用均值不等式求最值等應(yīng)用問(wèn)題都起到工具性作用。通過(guò)本章的學(xué)習(xí)有利于學(xué)生對(duì)后面不等式的證明及前面函數(shù)的一些最值值域進(jìn)一步研究,起到承前啟后的作用。

      2、教學(xué)內(nèi)容

      本節(jié)課的主要教學(xué)內(nèi)容是通過(guò)現(xiàn)實(shí)問(wèn)題進(jìn)行數(shù)學(xué)實(shí)驗(yàn)猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過(guò)在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;與此同時(shí)在推理論證的基礎(chǔ)上學(xué)會(huì)應(yīng)用。

      3、教學(xué)目標(biāo)

      教學(xué)目標(biāo)是基于對(duì)教材,教學(xué)大綱和學(xué)生學(xué)情的分析相應(yīng)制定的。在新課程理念的指導(dǎo)下,更為關(guān)注學(xué)生的合作交流能力的培養(yǎng),關(guān)注學(xué)生探究問(wèn)題的習(xí)慣和意識(shí)的培養(yǎng)。因此,結(jié)合本節(jié)課內(nèi)容與實(shí)驗(yàn),設(shè)計(jì)本節(jié)課教學(xué)目標(biāo)如下:

      知識(shí)與技能:對(duì)于算術(shù)平均數(shù)與幾何平均數(shù)的理解以及定理的掌握;

      過(guò)程與方法:通過(guò)情景設(shè)置提出問(wèn)題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣;引導(dǎo)學(xué)生通過(guò)問(wèn)題設(shè)計(jì),模型轉(zhuǎn)化,類(lèi)比猜想實(shí)現(xiàn)定理的發(fā)現(xiàn),體驗(yàn)知識(shí)與規(guī)律的形成過(guò)程;通過(guò)模型對(duì)比,多個(gè)角度,多種方法求解,拓寬學(xué)生的思路,優(yōu)化學(xué)生的思維方式,提高學(xué)生綜合創(chuàng)新與創(chuàng)造能力。

      情感態(tài)度價(jià)值觀(guān):培養(yǎng)學(xué)生生活問(wèn)題數(shù)學(xué)化,并注重運(yùn)用數(shù)學(xué)解決生活中實(shí)際問(wèn)題的習(xí)慣,有利于數(shù)學(xué)生活化,大眾化;同時(shí)通過(guò)學(xué)生自身的探索研究領(lǐng)略獲取新知的喜悅。

      教學(xué)重點(diǎn):算術(shù)平均數(shù)與幾何平均數(shù)的理解以及定理的掌握;

      教學(xué)難點(diǎn):算術(shù)平均數(shù)與幾何平均數(shù)以及定理發(fā)現(xiàn)探索過(guò)程的構(gòu)建及應(yīng)用;

      教學(xué)關(guān)鍵:學(xué)生對(duì)于實(shí)驗(yàn)的實(shí)踐及函數(shù)模型的構(gòu)建。

      教學(xué)模式:探究式合作式

      二、學(xué)情分析

      學(xué)生已經(jīng)掌握了不等式的基本性質(zhì),高中的學(xué)生已經(jīng)具有較好的邏輯思維能力,因此他們希望能夠自己探索,發(fā)現(xiàn)問(wèn)題和解決問(wèn)題?,F(xiàn)在經(jīng)歷課改的學(xué)生不僅僅停留在接受學(xué)習(xí)的框框內(nèi),他們更需要充滿(mǎn)活力與創(chuàng)造發(fā)現(xiàn)的課堂。課堂實(shí)驗(yàn)可能存在問(wèn)題:對(duì)EXEL軟件不夠熟練。對(duì)于模型構(gòu)造思路不夠清晰。

      三、教法分析

      不同于傳統(tǒng)的講授課,基于數(shù)學(xué)實(shí)驗(yàn)的教學(xué)實(shí)踐課,教師的教應(yīng)有瞻前性,應(yīng)該在實(shí)驗(yàn)課前讓學(xué)生對(duì)于軟件的應(yīng)用有充分的準(zhǔn)備,并進(jìn)行分組討論得到數(shù)學(xué)模型。依據(jù)前蘇聯(lián)教育家贊可夫"問(wèn)題教學(xué)法"確定本堂課所采用的教學(xué)方法是"生活中發(fā)現(xiàn)問(wèn)題,實(shí)驗(yàn)中分析問(wèn)題,設(shè)計(jì)中解決問(wèn)題,總結(jié)問(wèn)題,論證后延拓問(wèn)題"五環(huán)節(jié)教學(xué)方法,運(yùn)用這種教學(xué)方法能更好地使學(xué)生經(jīng)歷實(shí)驗(yàn)的發(fā)生,發(fā)展和"再創(chuàng)造"的全過(guò)程,主動(dòng)地吸收新知識(shí)的精髓。

      四、學(xué)法指導(dǎo)

      新的教學(xué)理念下課堂教學(xué)已經(jīng)是一個(gè)多維度多中心的整體。教師學(xué)生都是參與課堂的主體,而教學(xué)設(shè)計(jì)與實(shí)驗(yàn)則是課堂的載體,它將調(diào)度師生共同參與教學(xué)活動(dòng),并在參與中盡量獲取知識(shí)與能力上的探討,共鳴與思維能力的升華與內(nèi)化。教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)數(shù)學(xué)實(shí)驗(yàn)課的教學(xué)特點(diǎn),這節(jié)課主要是教給學(xué)生"動(dòng)手做,動(dòng)腦想;多訓(xùn)練,多實(shí)踐。"的研討式學(xué)習(xí)方法。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的途徑,思考問(wèn)題的方法,使學(xué)生真正成為教學(xué)的主體。通過(guò)這樣使學(xué)生"學(xué)"有新"思","思"有所"得","練"有所"獲"。學(xué)生才會(huì)學(xué)習(xí)數(shù)學(xué)中體驗(yàn)發(fā)現(xiàn)的成就感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;在此過(guò)程中,學(xué)生學(xué)會(huì)了交流合作,并學(xué)以致用,才能適應(yīng)素質(zhì)教育下培養(yǎng)"創(chuàng)新型"人才的需要。

      五、實(shí)驗(yàn)內(nèi)容與實(shí)驗(yàn)程序:

      問(wèn)題:元旦晚會(huì)我們學(xué)校即將舉行游園活動(dòng),每個(gè)班級(jí)有一條20米長(zhǎng)的紅絲帶在燈光球場(chǎng)圍成一矩形的場(chǎng)地活動(dòng),請(qǐng)問(wèn)大家應(yīng)該怎么圍才能使我們班級(jí)的場(chǎng)地面積最大

      1問(wèn)題提煉:(用數(shù)學(xué)語(yǔ)言表達(dá))

      2實(shí)驗(yàn)步驟:

      A請(qǐng)根據(jù)題目要求選擇整數(shù)長(zhǎng)度為邊,按照制圖方法繪制5個(gè)矩形,并比較面積

      B把上面的矩形按照邊長(zhǎng)與面積的不同列表歸納

      長(zhǎng)度(m)

      寬度(m)

      面積()

      C根據(jù)以上表格數(shù)據(jù),請(qǐng)用exel軟件作出柱狀圖,并思考以下問(wèn)題:

      (1)在邊長(zhǎng)變化過(guò)程中,面積的大小變化情況與趨勢(shì)

      (2)由這種趨勢(shì)請(qǐng)同學(xué)們自己猜想總結(jié)一個(gè)結(jié)論。

      3實(shí)驗(yàn)的感言與進(jìn)一步構(gòu)造數(shù)學(xué)模型的思考。

      六、教學(xué)流程

      1,生活問(wèn)題創(chuàng)設(shè)情景:通過(guò)生活問(wèn)題設(shè)置情景并構(gòu)建實(shí)驗(yàn)

      2,構(gòu)建模型解決問(wèn)題:學(xué)生通過(guò)合作討論構(gòu)建函數(shù)及不等式解決問(wèn)題并發(fā)現(xiàn)均值不等式

      3,定理總結(jié)結(jié)論表述:用數(shù)學(xué)語(yǔ)言表達(dá)均值不等式并用文字語(yǔ)言總結(jié)陳述

      4,定理論證課堂練習(xí):用幾何與代數(shù)方法分別論證結(jié)論并進(jìn)行課堂練習(xí)

      5,學(xué)習(xí)感言教學(xué)小結(jié):由學(xué)生發(fā)表學(xué)習(xí)感言,老師總結(jié)本堂課的學(xué)習(xí)過(guò)程與學(xué)習(xí)方法。學(xué)習(xí)過(guò)程:發(fā)現(xiàn)問(wèn)題――實(shí)驗(yàn)猜想――構(gòu)建模型――發(fā)現(xiàn)規(guī)律――論證再運(yùn)用;學(xué)習(xí)方法:協(xié)作探討,自主實(shí)驗(yàn),猜想證明,發(fā)現(xiàn)應(yīng)用。

      七、教學(xué)反饋評(píng)價(jià)

      本節(jié)課利用生活問(wèn)題設(shè)計(jì)數(shù)學(xué)實(shí)驗(yàn),是現(xiàn)階段新課程改革的新試點(diǎn),是學(xué)生進(jìn)行數(shù)學(xué)研究性學(xué)習(xí)與自主學(xué)習(xí)的一重要手段與途徑。

      本節(jié)課通過(guò)生活問(wèn)題的合作交流探討,學(xué)生學(xué)習(xí)方式有了新的改變;在實(shí)驗(yàn)的構(gòu)造過(guò)程,學(xué)生的自主性,實(shí)踐性,創(chuàng)造性得到鍛煉與提高;在實(shí)驗(yàn)過(guò)程中學(xué)生的分工合作精神更是得到充分的考驗(yàn)與體現(xiàn),學(xué)生學(xué)會(huì)了合作與分享;通過(guò)對(duì)數(shù)學(xué)模型的構(gòu)建,學(xué)生更加體會(huì)進(jìn)行自主研究,合作學(xué)習(xí)的樂(lè)趣,同時(shí)培養(yǎng)了學(xué)生創(chuàng)新精神與發(fā)現(xiàn)能力。

      當(dāng)然本節(jié)課的一個(gè)突出點(diǎn)在于從書(shū)本某一個(gè)知識(shí)作為切入點(diǎn)構(gòu)造生活問(wèn)題,設(shè)計(jì)數(shù)學(xué)實(shí)驗(yàn),創(chuàng)造性地對(duì)教材進(jìn)行再利用,再編改。使得學(xué)生在課堂,課外自主學(xué)習(xí)與接受知識(shí)的方法途徑更加多樣,參與課堂的方式更加深入,更容易通過(guò)自己探究體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。這是傳統(tǒng)教學(xué)所沒(méi)辦法達(dá)到的。

      1637169