高考數(shù)學考試的答題技巧通用
高考數(shù)學考試的答題技巧通用2023
在高考中,不管學生們考的哪一門,都有相應的答題技巧,你知道高考數(shù)學的答題技巧有什么嗎?下面是小編為大家整理的關于高考數(shù)學考試的答題技巧,歡迎大家來閱讀。
高考的數(shù)學答題方法
審題要點
審題包括瀏覽全卷和細讀試題兩個方面。
開考前瀏覽。開考前5分鐘開始發(fā)卷,大家利用發(fā)卷至開始答題這段有限的時間,通過答前瀏覽對全卷有大致的了解,初步估算試卷難度和時間分配,據(jù)此統(tǒng)籌安排答題順序,做到心中有數(shù)。此時考生要做到“寵辱不驚”,也就是說,看到一道似曾相識的題時,心中不要竊喜,而要提醒自己,“這道題做時不可輕敵,小心有什么陷阱,或者做的題目只是相似,稍微的不易覺察的改動都會引起答案的不同”。碰到一道從未見過,猛然沒思路的題時,更不要受到干擾,相反,此時應開心,“我沒做過,別人也沒有。這是我的機會?!睍r刻提醒自己:我易人易,我不大意;我難人難,我不畏難。
答題過程中的仔細審題。這是關鍵步驟,要求不漏題,看準題,弄清題意,了解題目所給條件和要求回答的問題。不同的題型,考察不同的能力,具有不同的解題方法和策略,評分方式也不同,對不同的題型,審題時側(cè)重點有所不同。
1.選擇題是所占比例較大(40%)的客觀性試題,考察的內(nèi)容具體,知識點多,“雙基”與能力并重。對選擇題的審題,要搞清楚是選擇正確陳述還是選擇錯誤陳述,采用特殊什么方法求解等。
2.填空題屬于客觀性試題。一般是中檔題,但是由于沒有中間解題過程,也就沒有過程分,稍微出現(xiàn)點錯誤就和一點不會做結(jié)果相同,“后果嚴重”。審題時注意題目考查的知識點、方法和此類問題的易錯點等。
3. 解答題在試卷中所占分數(shù)較多(74分),不僅需要解出結(jié)果還要列出解題過程。解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含信息,聯(lián)想相關題型的通性通法,尋找和確定具體的解題方法和步驟,問題才能解決。
高考數(shù)學考試解題技巧
一、熟悉化策略
所謂熟悉化策略,就是當我們面臨的是一道以前沒有接觸過的陌生題目時,要設法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗或解題模式,順利地解出原題。
一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。
二、簡單化策略
所謂簡單化策略,就是當我們面臨的是一道結(jié)構(gòu)復雜、難以入手的題目時,要設法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。
簡單化是熟悉化的補充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。
因此,在實際解題時,這兩種策略常常是結(jié)合在一起進行的,只是著眼點有所不同而已。
解題中,實施簡單化策略的途徑是多方面的,常用的有:尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當分解結(jié)論等。
三、直觀化策略:
所謂直觀化策略,就是當我們面臨的是一道內(nèi)容抽象,不易捉摸的題目時,要設法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯(lián)系,找到原題的解題思路。
四、特殊化策略
所謂特殊化策略,就是當我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。
五、一般化策略
所謂一般化策略,就是當我們面臨的是一個計算比較復雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時,要設法把特殊問題一般化,找出一個能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題。
高考數(shù)學答題技巧方法
1、高考數(shù)學答題帶著量角器進考場
帶個量角器進考場,遇見解析幾何馬上可以知道是多少度,小題求角基本馬上解了,要是求別的也可以代換,大題角度是個很重要的結(jié)論,如果你實在不會,也可以寫出最后結(jié)論。
2、高考數(shù)學答題立體幾何
立體幾何中,求二面角B-OA-C的新方法。利用三面角余弦定理。設二面角B-OA-C是∠OA,∠AOB是α,∠BOC是β,∠AOC是γ,這個定理就是:cos∠OA=(cosβ-cosαcosγ)/sinαsinγ。知道這個定理,如果考試中遇到立體幾何求二面角的題,套一下公式就出來了。
3、高考數(shù)學答題取特殊值法
圓錐曲線中最后題往往聯(lián)立起來很復雜導致算不出,這時你可以取特殊值法強行算出過程就是先聯(lián)立,后算代爾塔,用下韋達定理,列出題目要求解的表達式,就ok了。
4、高考數(shù)學答題空間幾何
空間幾何證明過程中有一步實在想不出把沒用過的條件直接寫上然后得出想不出的那個結(jié)論即可。如果第一題真心不會做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的同學建議先隨便建立個空間坐標系,做錯了還有2分可以得!
5、高考數(shù)學答題圖像法
超越函數(shù)的導數(shù)選擇題,可以用滿足條件常函數(shù)代替,不行用一次函數(shù)。如果條件過多,用圖像法秒殺。不等式也是特值法圖像法。
高考數(shù)學解題的方法
1.高考數(shù)學答題需要調(diào)適心理,增強信心
(1)合理設置高考數(shù)學考試目標,創(chuàng)設寬松的應考氛圍,以平常心對待高考;
(2)合理安排飲食,提高睡眠質(zhì)量;
(3)保持良好的高考數(shù)學備考狀態(tài),不斷進行積極的心理暗示;
(4)靜能生慧,穩(wěn)定情緒,凈化心靈,滿懷信心地迎接即將到來的考試。
2.高考數(shù)學答題需要悉心準備,不紊不亂
(1)重點復習高考數(shù)學,查缺補漏。對前幾次模擬考試的試題分類梳理、整合,既可按知識分類,也可按數(shù)學思想方法分類。強化聯(lián)系,形成知識網(wǎng)絡結(jié)構(gòu),以少勝多,以不變應萬變。
(2)查找高考數(shù)錯題,分析高考數(shù)病因,對癥下藥,這是重點工作。
(3)閱讀《高考數(shù)學考試說明》和《高考數(shù)學試題分析》,確保沒有知識盲點。
(4)高考數(shù)回歸課本,回歸基礎,回歸近年高考試題,把握通性通法。
(5)重視書寫表達的規(guī)范性和簡潔性,掌握各類常見題型的表達模式,避免“會而不對,對而不全”現(xiàn)象的出現(xiàn)。
(6)高考數(shù)學臨考前應做一定量的中、低檔題,以達到熟悉基本方法、典型問題的目的,一般不再做難題,要保持清醒的頭腦和良好的競技狀態(tài)。
3.高考數(shù)學答題需要入場臨戰(zhàn),通覽全卷
最容易導致心理緊張、焦慮和恐懼的是入場后與答卷前的“臨戰(zhàn)”階段,此時保持心態(tài)平穩(wěn)是非常重要的。剛拿到試卷,一般心情比較緊張,不要匆忙作答,可先通覽全卷,盡量從卷面上獲取最多的信息,為實施正確的解題策略作鋪墊,一般可在五分鐘之內(nèi)做完下面幾件事:
(1)填寫好全部考生信息,檢查試卷有無問題;
(2)調(diào)節(jié)情緒,盡快進入考試狀態(tài),可解答那些一眼就能看得出結(jié)論的簡單選擇或填空題(一旦解出,信心倍增,情緒立即穩(wěn)定);
(3)對于不能立即作答的題目,可一邊通覽,一邊粗略地分為a、b兩類:a類指題型比較熟悉、容易上手的題目;b類指題型比較陌生、自我感覺有困難的題目,做到心中有數(shù)。
高考數(shù)學答題竅門
1、高考數(shù)學答題審題要慢,答題要快
有些考生只知道一味求快,往往高考數(shù)學題意未清,便匆忙動筆,結(jié)果誤入歧途,即所謂欲速則不達,看錯一個字可能會遺憾終生,所以審題一定要慢,有了這個“慢”,才能形成完整的合理的解題策略,才有答題的“快”。
2、高考數(shù)學答題運算要準,膽子要大
高考數(shù)學沒有足夠的時間讓你反復驗算,更不容你一再地變換解題方法,往往是拿到一個題目,憑感覺選定一種方法就動手做,這時除了你的每一步運算務求正確外,還要求把你當時的解法堅持到底,也許你選擇的不是最好的方法,但如回頭重來將會花費更多的時間,當然堅持到底并不意味著鉆牛角尖,一旦發(fā)現(xiàn)自己走進死胡同,還是要立刻迷途知返。
3、高考數(shù)學答題先易后難,敢于放棄
能夠增強信心,使思維趨向,對發(fā)揮水平極為有利;另一方面如果先做高考數(shù)學難題,可能會浪費好多時間,即使難關被攻克,卻已沒有時間去得那些易得的分數(shù),所以關鍵時刻,敢于放棄,也是一種明智的選擇。有些解答題第一問就很難,這時可以先放棄第一問,而直接使用第一問的結(jié)論解決第2問、第3問。
4、高考數(shù)學答題先熟后生,合理用時
面對熟悉的高考數(shù)學題目,自然象吃了定心丸,做起來得心應手,會使你獲得好心情,并且可以在最短時間內(nèi)完成,留下更多的時間來思考那些不熟悉的題目。有些題目需花很多時間卻只得到很少分數(shù),有些題目只要花很少時間卻有很高的分值。所以應先把時間用在那些較易題或分值較高題目上,最大限度地提高時間的利用率。
高考數(shù)學答題方法
高考數(shù)學選擇題比其他類型題目難度較低,但知識覆蓋面廣,要求解題熟練、靈活、快速、準確?,F(xiàn)總結(jié)了十大選擇題的解題技巧,幫助同學們提高答題效率及準確率。
1.剔除法:利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數(shù)值范圍時,取特殊點代入驗證即可排除。
2.特特殊值檢驗法:對于具有一般性的數(shù)學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
3.極端性原則:將所要研究的問題向極端狀態(tài)進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數(shù)應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,采用極端性去分析,就能瞬間解決問題。
4.順推_法:利用數(shù)學定理、公式、法則、定義和題意,通過直接演算推理得出結(jié)果的方法。
5.逆推驗證法(代答案入題干驗證法):將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。
6.正難則反法:從題的正面解決比較難時,可從選項出發(fā)逐步逆推找出符合條件的結(jié)論,或從反面出發(fā)得出結(jié)論。
7.數(shù)形結(jié)合法:由題目條件,做出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經(jīng)過簡單的推理或計算,從而得出答案的方法。數(shù)形結(jié)合的好處就是直觀,甚至可以用量角尺直接量出結(jié)果來。
8.遞推歸納法:通過題目條件進行推理,尋找規(guī)律,從而歸納出正確答案的方法。
9.特征分析法:對題設和選擇項的特點進行分析,發(fā)現(xiàn)規(guī)律,歸納得出正確判斷的方法。
10.估值選擇法:有些問題,由于題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
高考數(shù)學的解題技巧
在審題時要注意題目中給出的條件,一道給出的題目,不會有用不到的條件,而另一方面,你要相信給出的條件一定是可以做到正確答案的。所以,解題時,一切都從題目條件出發(fā),只有這樣,一切才都有可能。
在數(shù)學家波利亞的四個解題步驟中,第一步審題格外重要,審題步驟中,又有這樣一個技巧:當你對整道題目沒有思路時:步驟(1)將題目條件推導出“新條件”,步驟(2)將題目結(jié)論推導到“新結(jié)論”.
步驟(1)就是不要理會題目中你不理解的部分,只要你根據(jù)題目條件把能做的先做出來,能推導的先推導出來,從而得到“新條件”。
步驟(2)就是想要得到題目的結(jié)論,我需要先得到什么結(jié)論,這就是所謂的“新結(jié)論”。然后在“新條件”與“新結(jié)論”之間再尋找關系。一道難題,難就難在題目條件與結(jié)論的關系難以建立,而你自己推出的“新條件”與“新結(jié)論”之間的關系往往比原題更容易建立,這也意味著解出題目的可能性也就越大!
最后要提醒的是,雖然我們認為最后一題有相當分值的易得分部分,但是畢竟已是整場考試的最后階段,強弩之末勢不能穿魯縞,疲勞不可避免,因此所有同學在做最后一題時,都要格外小心謹慎,避免易得分部分因為疲勞出錯,導致失分的遺憾結(jié)果出現(xiàn)。
高考數(shù)學必備解題技巧
高考的特點是以學生解題能力的高低為標準的一次性選拔,這就使得臨場發(fā)揮顯得尤為重要,研究和總結(jié)臨場解題策略,進行應試訓練和心理輔導,已成為高考輔導的重要內(nèi)容之一,正確運用數(shù)學高考臨場解題策略,不僅可以預防各種心理障礙造成的不合理丟分和計算失誤及筆誤,而且能運用科學的檢索方法,建立神經(jīng)聯(lián)系,挖掘思維和知識的潛能,考出最佳成績。
一、調(diào)理大腦思緒,提前進入數(shù)學情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設數(shù)學情境,進而醞釀數(shù)學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區(qū)和自己易出現(xiàn)的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強信心,使思維單一化、數(shù)學化、以平穩(wěn)自信、積極主動的心態(tài)準備應考。
二、“內(nèi)緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會走向反面,形成怯場,產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
三、沉著應戰(zhàn),確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態(tài),即發(fā)揮心理學所謂的“門坎效應”,之后做一題得一題,不斷產(chǎn)生正激勵,穩(wěn)拿中低,見機攀高。
四、“六先六后”,因人因卷制宜
在通覽全卷,將簡單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場解題能力的黃金季節(jié)了。這時,考生可依自己的解題習慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。
1.先易后難。就是先做簡單題,再做綜合題。應根據(jù)自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2.先熟后生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處。對后者,不要驚慌失措。應想到試題偏難對所有考生也難。通過這種暗示,確保情緒穩(wěn)定。對全卷整體把握之后,就可實施先熟后生的策略,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發(fā)揮,達到拿下中高檔題目的目的。
3.先同后異,就是說,先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,
4.先小后大。小題一般是信息量少、運算量小,易于把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創(chuàng)造一個寬松的心理基矗
5.先點后面,近年的高考數(shù)學解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為后面問題準備了思維基礎和解題條件,所以要步步為營,由點到面
6.先高后低。即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。
五、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達,結(jié)果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
六、確保運算準確,立足一次成功
數(shù)學高考題的容量在120分鐘時間內(nèi)完成大小26個題,時間很緊張,不允許做大量細致的解后檢驗,所以要盡量準確運算(關鍵步驟,力求準確,寧慢勿快),立足一次成功。解題速度是建立在解題準確度基礎上,更何況數(shù)學題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準確,不能為追求速度而丟掉準確度,甚至丟掉重要的得分步驟。假如速度與準確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
七、講求規(guī)范書寫,力爭既對又全
考試的又一個特點是以卷面為唯一依據(jù)。這就要求不但會而且要對、對且全,全而規(guī)范。會而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環(huán)效應”。“書寫要工整,卷面能得分”講的也正是這個道理。
八、面對難題,講究策略,爭取得分
會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題策略是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數(shù)。如從最初的把文字語言譯成符號語言,把條件和目標譯成數(shù)學表達式,設應用題的未知數(shù),設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數(shù)學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
2.跳步解答。解題過程卡在一中間環(huán)節(jié)上時,可以承認中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說明此途徑不對,立即否得到正確結(jié)論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時間限制,中間結(jié)論來不及得到證實,就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經(jīng)努力而攻下了中間難點,可在相應題尾補上。
九、以退求進,立足特殊,發(fā)散一般
對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等??傊?,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發(fā)思維,達到對“一般”的解決。
十、執(zhí)果索因,逆向思考,正難則反
對一個問題正面思考發(fā)生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展。順向推有困難就逆推,直接證有困難就反證。如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
十一、回避結(jié)論的肯定與否定,解決探索性問題
對探索性問題,不必追求結(jié)論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結(jié)論自明。
十二、應用性問題思路:面—點—線
解決應用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數(shù)據(jù),此為“點”;綜合聯(lián)系,提煉關系,依靠數(shù)學方法,建立數(shù)學模型,此為“線”。如此將應用性問題轉(zhuǎn)化為純數(shù)學問題。當然,求解過程和結(jié)果都不能離開實際背景。