亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級(jí)數(shù)學(xué) > 冀教版八年級(jí)數(shù)學(xué)上冊(cè)期末試卷(2)

      冀教版八年級(jí)數(shù)學(xué)上冊(cè)期末試卷(2)

      時(shí)間: 妙純901 分享

      冀教版八年級(jí)數(shù)學(xué)上冊(cè)期末試卷

        ∴AD= AC,A錯(cuò)誤;

        ∵∠ACD+∠A=90°,∠B+∠A=90°,

        ∴∠ACD=∠B=30°,

        ∴AC AB,B正確;

        CD= BC,C、D錯(cuò)誤;

        故選:B.

        12.如圖,在△ABC中,DE是AC的垂直平分線(xiàn),△ABC的周長(zhǎng)為19cm,△ABD的周長(zhǎng)為13cm,則AE的長(zhǎng)為(  )

        A.3cm B.6cm C.12cm D.16cm

        【考點(diǎn)】線(xiàn)段垂直平分線(xiàn)的性質(zhì).

        【分析】根據(jù)線(xiàn)段垂直平分線(xiàn)性質(zhì)得出AD=DC,AE=CE= AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.

        【解答】解:∵DE是AC的垂直平分線(xiàn),

        ∴AD=DC,AE=CE= AC,

        ∵△ABC的周長(zhǎng)為19cm,△ABD的周長(zhǎng)為13cm,

        ∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,

        ∴AC=6cm,

        ∴AE=3cm,

        故選A.

        二、填空題

        13.下列各式:① ② ③ ④ 是最簡(jiǎn)二次根式的是 ②③ (填序號(hào)).

        【考點(diǎn)】最簡(jiǎn)二次根式.

        【分析】根據(jù)最簡(jiǎn)二次根式的被開(kāi)方數(shù)不含分母;被開(kāi)方數(shù)不含能開(kāi)得盡方的因數(shù)或因式,可得答案..

        【解答】解:② ③ 是最簡(jiǎn)二次根式,

        故答案為:②③.

        14.如圖,已知△ABC≌△FED,∠A=40°,∠B=106°,則∠EDF= 34° .

        【考點(diǎn)】全等三角形的性質(zhì).

        【分析】根據(jù)全等三角形的性質(zhì)得出∠F=∠A=40°,∠E=∠B=106°,根據(jù)三角形內(nèi)角和定理求出即可.

        【解答】解:∵△ABC≌△FED,∠A=40°,∠B=106°,

        ∴∠F=∠A=40°,∠E=∠B=106°,

        ∴∠EDF=180°﹣∠E﹣∠F=34°,

        故答案為:34°.

        15.實(shí)數(shù)a在數(shù)軸上的位置如圖,則|a﹣3|= 3﹣a .

        【考點(diǎn)】實(shí)數(shù)與數(shù)軸.

        【分析】根據(jù)數(shù)軸上的點(diǎn)表示的數(shù)右邊的總比左邊的大,可得a與3的關(guān)系,根據(jù)差的絕對(duì)值是大數(shù)減小數(shù),可得答案.

        【解答】解:由數(shù)軸上點(diǎn)的位置關(guān)系,得

        a<3.

        |a﹣3|=3﹣a,

        故答案為:3﹣a.

        16.如圖,已知∠C=90°,∠1=∠2,若BC=10,BD=6,則點(diǎn)D到邊AB的距離為 4 .

        【考點(diǎn)】角平分線(xiàn)的性質(zhì).

        【分析】由已知條件首先求出線(xiàn)段CD的大小,接著利用角平分線(xiàn)的性質(zhì)得點(diǎn)D到邊AB的距離等于CD的大小,問(wèn)題可解.

        【解答】解:∵BC=10,BD=6,

        ∴CD=4,

        ∵∠C=90°,∠1=∠2,

        ∴點(diǎn)D到邊AB的距離等于CD=4,

        故答案為:4.

        17.如圖,在△ABC中,∠ACB=90°,∠B=40°,D為線(xiàn)段AB的中點(diǎn),則∠ACD= 50° .

        【考點(diǎn)】直角三角形的性質(zhì).

        【分析】由“直角三角形的兩個(gè)銳角互余”得到∠A=50°.根據(jù)“直角三角形斜邊上的中線(xiàn)等于斜邊的一半”得到CD=AD,則等邊對(duì)等角,即∠ACD=∠A=50°.

        【解答】解:如圖,∵在△ABC中,∠ACB=90°,∠B=40°,

        ∴∠A=50°.

        ∵D為線(xiàn)段AB的中點(diǎn),

        ∴CD=AD,

        ∴∠ACD=∠A=50°.

        故答案是:50°.

        18.如圖,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P點(diǎn)從B向A運(yùn)動(dòng),每分鐘走1m,Q點(diǎn)從B向D運(yùn)動(dòng),每分鐘走2m,P、Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng) 4 分鐘后△CAP與△PQB全等.

        【考點(diǎn)】直角三角形全等的判定.

        【分析】設(shè)運(yùn)動(dòng)x分鐘后△CAP與△PQB全等;則BP=xm,BQ=2xm,則AP=(12﹣x)m,分兩種情況:①若BP=AC,則x=4,此時(shí)AP=BQ,△CAP≌△PBQ;②若BP=AP,則12﹣x=x,得出x=6,BQ=12≠AC,即可得出結(jié)果.

        【解答】解:∵CA⊥AB于A,DB⊥AB于B,

        ∴∠A=∠B=90°,

        設(shè)運(yùn)動(dòng)x分鐘后△CAP與△PQB全等;

        則BP=xm,BQ=2xm,則AP=(12﹣x)m,

        分兩種情況:

       ?、偃鬊P=AC,則x=4,

        AP=12﹣4=8,BQ=8,AP=BQ,

        ∴△CAP≌△PBQ;

       ?、谌鬊P=AP,則12﹣x=x,

        解得:x=6,BQ=12≠AC,

        此時(shí)△CAP與△PQB不全等;

        綜上所述:運(yùn)動(dòng)4分鐘后△CAP與△PQB全等;

        故答案為:4.

        19.已知 ,則 =   .

        【考點(diǎn)】二次根式有意義的條件.

        【分析】先根據(jù)二次根式有意義的條件求出x的值,進(jìn)而得出y的值,代入代數(shù)式進(jìn)行計(jì)算即可.

        【解答】解:∵y= + +4,

        ∴ ,

        解得x= ,

        ∴y=4,

        ∴原式= = .

        故答案為: .

        20.如圖,已知△ABC是腰長(zhǎng)為1的等腰直角三角形,以Rt△ABC的斜邊AC為直角邊,畫(huà)第二個(gè)等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫(huà)第三個(gè)等腰Rt△ADE,…,依此類(lèi)推,則第2016個(gè)等腰直角三角形的斜邊長(zhǎng)是 21008 .

        【考點(diǎn)】等腰直角三角形.

        【分析】先求出第一個(gè)到第四個(gè)的等腰直角三角形的斜邊的長(zhǎng),探究規(guī)律后即可解決問(wèn)題.

        【解答】解:第一個(gè)等腰直角三角形的斜邊為 ,

        第二個(gè)等腰直角三角形的斜邊為2=( )2,

        第三個(gè)等腰直角三角形的斜邊為2 =( )3,

        第四個(gè)等腰直角三角形的斜邊為4=( )4,

        …

        第2016個(gè)等腰直角三角形的斜邊為( )2016=21008.

        故答案為21008.

        三、解答題

        21.計(jì)算: ÷ + × ﹣6 .

        【考點(diǎn)】二次根式的混合運(yùn)算.

        【分析】根據(jù)二次根式的運(yùn)算順序和運(yùn)算法則依次計(jì)算可得.

        【解答】解:原式= + ﹣2

        =2 +3﹣2

        =3.

        22.閱讀下列解題過(guò)程,并按要求回答:

        化簡(jiǎn): + = ﹣ …①

        = ﹣ …②

        = …③

        = …④

        =﹣ …⑤

        (1)上述計(jì)算過(guò)程在第幾步出現(xiàn)錯(cuò)誤,并指出錯(cuò)誤原因;

        (2)請(qǐng)書(shū)寫(xiě)正確的化簡(jiǎn)過(guò)程.

        【考點(diǎn)】分式的加減法.

        【分析】(1)根據(jù)去括號(hào),可得答案;

        (2)根據(jù)分式的加減,可得答案.

        【解答】解:(1)第③步出現(xiàn)錯(cuò)誤,

        錯(cuò)因:去帶負(fù)號(hào)的括號(hào)時(shí),括號(hào)里的各項(xiàng)沒(méi)有變號(hào)

        (2)原式= ﹣

        = ﹣

        =

        =

        =﹣ .

        23.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.

        某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過(guò)程.

        作AD⊥BC于D,設(shè)BD=x,用含x的代數(shù)式表示CD→根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型求出x→利用勾股定理求出AD的長(zhǎng),再計(jì)算三角形的面積.

        【考點(diǎn)】勾股定理.

        【分析】設(shè)BD=x,由CD=BC﹣BD表示出CD,分別在直角三角形ABD與直角三角形ACD中,利用勾股定理表示出AD2,列出關(guān)于x的方程,求出方程的解得到AD的長(zhǎng),即可求出三角形ABC面積.

        【解答】解:如圖,在△ABC中,AB=15,BC=14,AC=13,

        設(shè)BD=x,則有CD=14﹣x,

        由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,

        ∴152﹣x2=132﹣(14﹣x)2,

        解之得:x=9,

        ∴AD=12,

        ∴S△ABC= BC•AD= ×14×12=84.

        24.某校為美化校園,計(jì)劃對(duì)某一區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

        【考點(diǎn)】分式方程的應(yīng)用.

        【分析】設(shè)乙工程隊(duì)每天能完成綠化的面積是x(m2),根據(jù)在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,列出分式方程,解方程即可.

        【解答】解:(1)設(shè)乙工程隊(duì)每天能完成綠化的面積是x(m2),根據(jù)題意得

        ﹣ =4

        解得:x=50

        經(jīng)檢驗(yàn):x=50是原方程的解

        所以甲工程隊(duì)每天能完成綠化的面積是50×2=100(m2)

        答:甲、乙兩工程隊(duì)每天能完成綠化的面積分別是100m2、50m2.

        25.數(shù)學(xué)課上,老師要求學(xué)生證明:“到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線(xiàn)上”,請(qǐng)你結(jié)合圖形書(shū)寫(xiě)已知、求證,并完成證明過(guò)程:

        已知: P是∠AOB內(nèi)任一點(diǎn),PC⊥OA,PD⊥OB,垂足分別是C、D兩點(diǎn),PC=PD; .

        求證: 點(diǎn)P在∠AOB的平分線(xiàn)上 .

        證明:

        【考點(diǎn)】角平分線(xiàn)的性質(zhì).

        【分析】根據(jù)題意畫(huà)出圖形,寫(xiě)出已知和求證,根據(jù)全等三角形的判定和性質(zhì)證明結(jié)論.

        【解答】已知:P是∠AOB內(nèi)任一點(diǎn),PC⊥OA,PD⊥OB,垂足分別是C、D兩點(diǎn),PC=PD;

        求證:點(diǎn)P在∠AOB的平分線(xiàn)上;

        證明:連結(jié)OP;如圖所示:

        ∵PC⊥OA,PD⊥OB,

        ∴∠PCO=∠PDO=90°,…

        在Rt△OPC 和Rt△OPD中, ,

        ∴Rt△OPC≌Rt△OPD(HL);

        ∴∠POA=∠POB,

        ∴OP是∠AOB的平分線(xiàn),

        即點(diǎn)P在∠AOB的平分線(xiàn)上;

        故答案為:P是∠AOB內(nèi)任一點(diǎn),PC⊥OA,PD⊥OB,垂足分別是C、D兩點(diǎn),PC=PD;

        點(diǎn)P在∠AOB的平分線(xiàn)上.

        26.如圖,在等腰△ABC與等腰△ADE中,AB=AC,AD=AE,且∠B=∠ADE,

        (1)如圖1,當(dāng)點(diǎn)D為BC中點(diǎn)時(shí),試說(shuō)明: .

        (2)如圖2,聯(lián)接CE,當(dāng)EC⊥BC時(shí),試說(shuō)明:△ABC為等腰直角三角形.

        【考點(diǎn)】等腰直角三角形;等腰三角形的性質(zhì).

        【分析】(1)根據(jù)等腰三角形的性質(zhì)可得出AD⊥BC,∠BAD= ∠BAC,再通過(guò)角的計(jì)算即可證出結(jié)論∠EDC=∠BAD= ∠BAC;

        (2)通過(guò)等腰三角形以及角的計(jì)算找出∠BAD=∠CAE,由此即可證出△BAD≌△CAE(SAS),從而得出∠B=∠ACE=∠ACB,再結(jié)合EC⊥BC,即可得出∠ACB=∠ACE=45°,∠B=45°,即△ABC為等腰直角三角形.

        【解答】證明:(1)∵點(diǎn)D為BC中點(diǎn),AB=AC,

        ∴AD⊥BC,∠BAD= ∠BAC,

        ∴∠ADB=∠ADC=90°,

        ∴∠BAD+∠B=90°,∠ADE+∠EDC=90°,

        又∵∠B=∠ADE,

        ∴∠EDC=∠BAD= ∠BAC.

        (2)∵AB=AC,AD=AE,且∠B=∠ADE,

        ∴∠BAC=∠DAE,

        ∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,

        ∴∠BAD=∠CAE.

        在△BAD和△CAE中,有 ,

        ∴△BAD≌△CAE(SAS),

        ∴∠B=∠ACE=∠ACB,

        ∵EC⊥BC,

        ∴∠ACB=∠ACE=45°,∠B=45°,

        ∴△ABC為等腰直角三角形.

        看了“冀教版八年級(jí)數(shù)學(xué)上冊(cè)期末試卷”的人還看了:

      1.冀教版七年級(jí)數(shù)學(xué)上冊(cè)期末試卷

      2.冀教版八年級(jí)數(shù)學(xué)上冊(cè)目錄

      3.冀教版七年級(jí)數(shù)學(xué)上冊(cè)期末試題

      4.冀教版四年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試題

      5.冀教版三年級(jí)上冊(cè)數(shù)學(xué)期末測(cè)試題

      2593206