亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二數(shù)學 > 高二數(shù)學三角函數(shù)公式總結(jié)

      高二數(shù)學三角函數(shù)公式總結(jié)

      時間: 鳳婷983 分享

      高二數(shù)學三角函數(shù)公式總結(jié)

        三角函數(shù)內(nèi)容在高二數(shù)學課程中占有重要的地位,下面是學習啦小編給大家?guī)淼母叨?shù)學三角函數(shù)公式總結(jié),希望對你有幫助。

        高二數(shù)學三角函數(shù)公式

        銳角三角函數(shù)定義:銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

        正弦(sin)等于對邊比斜邊;sinA=a/c

        余弦(cos)等于鄰邊比斜邊;cosA=b/c

        正切(tan)等于對邊比鄰邊;tanA=a/b

        余切(cot)等于鄰邊比對邊;cotA=b/a

        正割(sec)等于斜邊比鄰邊;secA=c/b

        余割(csc)等于斜邊比對邊。cscA=c/a

        互余角的三角函數(shù)間的關(guān)系

        sin(90°-α)=cosα, cos(90°-α)=sinα,

        tan(90°-α)=cotα, cot(90°-α)=tanα.

        平方關(guān)系:

        sin^2(α)+cos^2(α)=1

        tan^2(α)+1=sec^2(α)

        cot^2(α)+1=csc^2(α)

        積的關(guān)系:

        sinα=tanα·cosα

        cosα=cotα·sinα

        tanα=sinα·secα

        cotα=cosα·cscα

        secα=tanα·cscα

        cscα=secα·cotα

        倒數(shù)關(guān)系:

        tanα·cotα=1

        sinα·cscα=1

        cosα·secα=1

        銳角三角函數(shù)公式

        兩角和與差的三角函數(shù):

        sin(A+B) = sinAcosB+cosAsinB

        sin(A-B) = sinAcosB-cosAsinB ?

        cos(A+B) = cosAcosB-sinAsinB

        cos(A-B) = cosAcosB+sinAsinB

        tan(A+B) = (tanA+tanB)/(1-tanAtanB)

        tan(A-B) = (tanA-tanB)/(1+tanAtanB)

        cot(A+B) = (cotAcotB-1)/(cotB+cotA)

        cot(A-B) = (cotAcotB+1)/(cotB-cotA)

        三角和的三角函數(shù):

        sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

        cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

        tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

        輔助角公式:

        Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

        sint=B/(A^2+B^2)^(1/2)

        cost=A/(A^2+B^2)^(1/2)

        tant=B/A

        Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

        倍角公式:

        sin(2α)=2sinα·cosα=2/(tanα+cotα)

        cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

        tan(2α)=2tanα/[1-tan^2(α)]

        三倍角公式:

        sin(3α)=3sinα-4sin^3(α)

        cos(3α)=4cos^3(α)-3cosα

        半角公式:

        sin(α/2)=±√((1-cosα)/2)

        cos(α/2)=±√((1+cosα)/2)

        tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

        降冪公式

        sin^2(α)=(1-cos(2α))/2=versin(2α)/2

        cos^2(α)=(1+cos(2α))/2=covers(2α)/2

        tan^2(α)=(1-cos(2α))/(1+cos(2α))

        萬能公式:

        sinα=2tan(α/2)/[1+tan^2(α/2)]

        cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

        tanα=2tan(α/2)/[1-tan^2(α/2)]

        積化和差公式:

        sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

        cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

        cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

        sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

        和差化積公式:

        sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

        sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

        cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

        cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

        推導公式:

        tanα+cotα=2/sin2α

        tanα-cotα=-2cot2α

        1+cos2α=2cos^2α

        1-cos2α=2sin^2α

        1+sinα=(sinα/2+cosα/2)^2

        其他:

        sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

        cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

        sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

        tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

        函數(shù)名 正弦 余弦 正切 余切 正割 余割

        在平面直角坐標系xOy中,從點O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點的坐標為(x,y)有

        正弦函數(shù) sinθ=y/r

        余弦函數(shù) cosθ=x/r

        正切函數(shù) tanθ=y/x

        余切函數(shù) cotθ=x/y

        正割函數(shù) secθ=r/x

        余割函數(shù) cscθ=r/y

        正弦(sin):角α的對邊比上斜邊

        余弦(cos):角α的鄰邊比上斜邊

        正切(tan):角α的對邊比上鄰邊

        余切(cot):角α的鄰邊比上對邊

        正割(sec):角α的斜邊比上鄰邊

        余割(csc):角α的斜邊比上對邊

        三角函數(shù)萬能公式

        萬能公式

        (1)(sinα)^2+(cosα)^2=1

        (2)1+(tanα)^2=(secα)^2

        (3)1+(cotα)^2=(cscα)^2

        證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

        (4)對于任意非直角三角形,總有

        tanA+tanB+tanC=tanAtanBtanC

        證:

        A+B=π-C

        tan(A+B)=tan(π-C)

        (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

        整理可得

        tanA+tanB+tanC=tanAtanBtanC

        得證

        同樣可以得證,當x+y+z=nπ(n∈Z)時,該關(guān)系式也成立

        由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

        (5)cotAcotB+cotAcotC+cotBcotC=1

        (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

        (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

        (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

        萬能公式為:

        設(shè)tan(A/2)=t

        sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)

        tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)

        cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)

        就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當要求一串函數(shù)式最值的時候,就可以用萬能公式,推導成只含有一個變量的函數(shù),最值就很好求了.

        三角函數(shù)關(guān)系

        倒數(shù)關(guān)系

        tanα ·cotα=1

        sinα ·cscα=1

        cosα ·secα=1

        商的關(guān)系

        sinα/cosα=tanα=secα/cscα

        cosα/sinα=cotα=cscαcα

        平方關(guān)系

        sin^2(α)+cos^2(α)=1

        1+tan^2(α)=sec^2(α)

        1+cot^2(α)=csc^2(α)

        同角三角函數(shù)關(guān)系六角形記憶法

        構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

        倒數(shù)關(guān)系

        對角線上兩個函數(shù)互為倒數(shù);

        商數(shù)關(guān)系

        六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

        平方關(guān)系

        在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

        兩角和差公式

        sin(α+β)=sinαcosβ+cosαsinβ

        sin(α-β)=sinαcosβ-cosαsinβ

        cos(α+β)=cosαcosβ-sinαsinβ

        cos(α-β)=cosαcosβ+sinαsinβ

        tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

        tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

        二倍角的正弦、余弦和正切公式

        sin2α=2sinαcosα

        cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

        tan2α=2tanα/(1-tan^2(α)

        高二數(shù)學學習方法

        做題之后加強反思,做到知識成片,問題成串。日久天長,構(gòu)建起一個內(nèi)容與方法的科學的網(wǎng)絡系統(tǒng)。俗話說:“有錢難買回頭看”。一般說做的題太少,很多熟能生巧的問題就會無從談起。因此,應該適當?shù)囟嘧鲱}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。所以要把自己學到的知識合理地系統(tǒng)地組織起來,要總結(jié)反思,這樣高中數(shù)學水平才能長進。

        積累高中數(shù)學資料隨時整理,要注意積累復習資料。把課堂筆記,練習,區(qū)單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內(nèi)容。這樣,數(shù)學復習資料才能越讀越精,一目了然。

        配合老師主動學習,高一新生的學習主動性太差是一個普遍存在的問題。小學生,常常是完成了作業(yè)就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學習好。高中則不然,作業(yè)雖多,但是只知做作業(yè)是絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一 一具體指明。因此,高中新生必須提高自己學習數(shù)學的主動性。準備向?qū)淼拇髮W生的學習方法過渡。

        合理規(guī)劃步步為營,高中的學習是非常緊張的。每個學生都要投入自己的幾乎全部的精力。要想能迅速進步,就要給自己制定一個較長遠的切實可行的數(shù)學學習目標和計劃,例如第一學期的期末,自己計劃達到班級的平均分數(shù),第一學年,達到年級的前三分之一,如此等等。此外,還要給自己制定學習計劃,詳細地安排好自己的零星時間,并及時作出合理的微量調(diào)整。
      看了“高二數(shù)學三角函數(shù)公式總結(jié)”的人還看了:

      1.高二數(shù)學三角函數(shù)知識點總結(jié)

      2.高中數(shù)學公式總結(jié):三角函數(shù)公式大全

      3.高中數(shù)學三角函數(shù)公式大全

      4.高二下冊數(shù)學三角函數(shù)知識點總結(jié)

      5.高二數(shù)學三角函數(shù)知識點

      6.高二數(shù)學必修4三角函數(shù)知識點總結(jié)

      7.高二數(shù)學必修4三角函數(shù)知識點總結(jié)(2)

      2625280