亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)> 高中數(shù)學(xué)的三角函數(shù)公式詳解

      高中數(shù)學(xué)的三角函數(shù)公式詳解

      時(shí)間: 夏萍1132 分享

      高中數(shù)學(xué)的三角函數(shù)公式詳解

        三角函數(shù)看似很復(fù)雜,但是其實(shí)很多都跟各個(gè)公式有聯(lián)系,學(xué)生需要喲知道三角函數(shù)的公司,下面學(xué)習(xí)啦的小編將為大家?guī)?lái)高中數(shù)學(xué)的三角函數(shù)的公式的具體介紹,希望能夠幫助到大家。

        高中數(shù)學(xué)的三角函數(shù)公式大全分析

        銳角三角函數(shù)公式

        sin α=∠α的對(duì)邊 / 斜邊

        cos α=∠α的鄰邊 / 斜邊

        tan α=∠α的對(duì)邊 / ∠α的鄰邊

        cot α=∠α的鄰邊 / ∠α的對(duì)邊

        倍角公式

        Sin2A=2SinA?CosA

        Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

        tan2A=(2tanA)/(1-tanA^2)

        (注:SinA^2 是sinA的平方 sin2(A) )

        三倍角公式

        sin3α=4sinα·sin(π/3+α)sin(π/3-α)

        cos3α=4cosα·cos(π/3+α)cos(π/3-α)

        tan3a = tan a · tan(π/3+a)· tan(π/3-a)

        三倍角公式推導(dǎo)

        sin3a

        =sin(2a+a)

        =sin2acosa+cos2asina

        輔助角公式

        Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

        sint=B/(A^2+B^2)^(1/2)

        cost=A/(A^2+B^2)^(1/2)

        tant=B/A

        Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

        降冪公式

        sin^2(α)=(1-cos(2α))/2=versin(2α)/2

        cos^2(α)=(1+cos(2α))/2=covers(2α)/2

        tan^2(α)=(1-cos(2α))/(1+cos(2α))

        高中數(shù)學(xué)的充要條件解題命中率提高的方法

        (1)先看“充分條件和必要條件”

        當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱(chēng)p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

        但為什么說(shuō)q是p的必要條件呢?

        事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對(duì)于p是必不可少的,因而是必要的。

        (2)再看“充要條件”

        若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱(chēng)為p是q的充要條件。記作p<=>q

        回憶一下初中學(xué)過(guò)的“等價(jià)于”這一概念;如果從命題A成立可以推出命題B成立,反過(guò)來(lái),從命題B成立也可以推出命題A成立,那么稱(chēng)A等價(jià)于B,記作A<=>B。“充要條件”的含義,實(shí)際上與“等價(jià)于”的含義完全相同。也就是說(shuō),如果命題A等價(jià)于命題B,那么我們說(shuō)命題A成立的充要條件是命題B成立;同時(shí)有命題B成立的充要條件是命題A成立。

        (3)定義與充要條件

        數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。

        顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示。

        “充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來(lái)表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。

        (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。


      猜你感興趣:

      1.高中數(shù)學(xué)《任意角的三角函數(shù)》知識(shí)點(diǎn)

      2.高中數(shù)學(xué)的三角函數(shù)知識(shí)點(diǎn)詳解

      3.高中數(shù)學(xué)必修一三角函數(shù)知識(shí)點(diǎn)總結(jié)

      4.高考必記數(shù)學(xué)公式匯總

      5.高一到高二數(shù)學(xué)公式匯總

      6.高一全部數(shù)學(xué)公式

      3785046