高二數學知識點:函數公式總結
高二數學知識點:函數公式總結
數學對于文科生來說是個大難題,有些同學甚至“談數學色變”。其實只要掌握恰當的學習方法,就能輕松拿下數學這門課。雖然說數學是理科,但是一些重要公式還是需要花時間記憶的,下面小編總結了高二的數學公式,希望能幫到大家。
(1)高中函數公式的變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
(2)一次函數:①若兩個變量,間的關系式可以表示成(為常數,不等于0)的形式,則稱是的一次函數。②當=0時,稱是的正比例函數。
(3)高中函數的一次函數的圖象及性質
?、侔岩粋€函數的自變量與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。
?、谡壤瘮?的圖象是經過原點的一條直線。
?、墼谝淮魏瘮抵?,當0,O,則經2、3、4象限;當0,0時,則經1、2、4象限;當0,0時,則經1、3、4象限;當0,0時,則經1、2、3象限。
?、墚?時,的值隨值的增大而增大,當0時,的值隨值的增大而減少。
(4)高中函數的二次函數:
?、僖话闶剑?),對稱軸是
頂點是;
?、陧旤c式:(),對稱軸是頂點是;
?、劢稽c式:(),其中(),()是拋物線與x軸的交點
(5)高中函數的二次函數的性質
?、俸瘮档膱D象關于直線對稱。
?、跁r,在對稱軸()左側,值隨值的增大而減少;在對稱軸()右側;的值隨值的增大而增大。當時,取得最小值
?、蹠r,在對稱軸()左側,值隨值的增大而增大;在對稱軸()右側;的值隨值的增大而減少。當時,取得最大值
高中函數的圖形的對稱
(1)軸對稱圖形:①如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。②軸對稱圖形上關于對稱軸對稱的兩點確定的線段被對稱軸垂直平分。
(2)中心對稱圖形:①在平面內,一個圖形繞某個點旋轉180度,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。