高一必修二數(shù)學(xué)公式知識(shí)總結(jié)
高一必修二數(shù)學(xué)公式知識(shí)總結(jié)
在高一數(shù)學(xué)學(xué)習(xí)階段,要熟記每一個(gè)數(shù)學(xué)公式,才能提高自己的學(xué)習(xí)水平。下面就讓學(xué)習(xí)啦小編給大家分享一些高一必修二數(shù)學(xué)公式知識(shí)總結(jié)吧,希望能對(duì)你有幫助!
高一必修二數(shù)學(xué)公式知識(shí)總結(jié)篇一
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
規(guī)律總結(jié)
上面這些誘導(dǎo)公式可以概括為:
對(duì)于k·π/2±α(k∈Z)的個(gè)三角函數(shù)值,
?、佼?dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;
?、诋?dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇變偶不變)
然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號(hào)。
(符號(hào)看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4為偶數(shù),所以取sinα。
當(dāng)α是銳角時(shí),2π-α∈(270°,360°),sin(2π-α)<0,符號(hào)為“-”。
所以sin(2π-α)=-sinα
上述的記憶口訣是:
奇變偶不變,符號(hào)看象限。
公式右邊的符號(hào)為把α視為銳角時(shí),角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數(shù)值的符號(hào)可記憶。
水平誘導(dǎo)名不變;符號(hào)看象限。
高一必修二數(shù)學(xué)公式知識(shí)總結(jié)篇二
同角三角函數(shù)基本關(guān)系
?、蓖侨呛瘮?shù)的基本關(guān)系式
倒數(shù)關(guān)系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數(shù)關(guān)系:對(duì)角線(xiàn)上兩個(gè)函數(shù)互為倒數(shù);
(2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。
(主要是兩條虛線(xiàn)兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。
(3)平方關(guān)系:在帶有陰影線(xiàn)的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
兩角和差公式
⒉兩角和與差的三角函數(shù)公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
高一必修二數(shù)學(xué)公式知識(shí)總結(jié)篇三
三倍角公式推導(dǎo)
附推導(dǎo):
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
看了高一必修二數(shù)學(xué)公式知識(shí)總結(jié)的人還看:
1.高中數(shù)學(xué)必修2空間幾何體知識(shí)點(diǎn)歸納總結(jié)