初三上冊數(shù)學(xué)期末試卷
初三上冊數(shù)學(xué)期末試卷
生命就是奇跡,永遠都不要放棄希望,哪怕希望渺小如豆,我們都要堅持舉著它,即使燭火灼傷了皮膚,我們也不能放棄,否則我們將永遠還在黑暗中。祝你九年級數(shù)學(xué)期末考試取得好成績,期待你的成功!這是學(xué)習(xí)啦小編整理的初三上冊數(shù)學(xué)期末試卷,希望你能從中得到感悟!
初三上冊數(shù)學(xué)期末試題
一、選擇題:本大題共8個小題,每小題3分,共24分.在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確選項填在答題卡對應(yīng)題目上.(注意:在試題卷上作答無效).
1.下列二次根式中,是最簡二次根式的為( )
A. B. C. D.
2.已知方程x2+mx+3=0的一個根是1,則m的值為( )
A.4 B.﹣4 C.3 D.﹣3
3.已知 ,則 的值為( )
A. B. C. D.
4.“射擊運動員射擊一次,命中靶心”這個事件是( )
A.確定事件 B.必然事件 C.不可能事件 D.不確定事件
5.在Rt△ABC中,∠C=90°,AB=5,BC=3,則cosB的值為( )
A. B. C. D.
6.如圖,D、E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若S△DOE:S△COA=1:25,則 的值為( )
A. B. C. D.
7.已知m、n是方程x2+3x﹣2=0的兩個實數(shù)根,則m2+4m+n+2mn的值為( )
A.1 B.3 C.﹣5 D.﹣9
8.如圖1,在三角形紙片ABC中,∠A=78°,AB=4,AC=6.將△ABC沿圖示中的虛線剪開,剪下的陰影三角形與原三角形相似的有( )
A.①②③ B.①②④ C.①③④ D.②③④
二、填空題:本大題共8個小題,每小題3分,共24分.請把答案直接填在答題卡對應(yīng)題中橫線上.(注意:在試題卷上作答無效)
9.二次根式 有意義,則x的取值范圍是 .
10.計算 的結(jié)果為 .
11.將方程x2﹣4x﹣3=0配方成(x﹣h)2=k的形式為 .
12.如圖,在△ABC中,G是重心.如果AG=6,那么線段DG的長為 .
13.為進一步發(fā)展基礎(chǔ)教育,自2014年以來,某區(qū)加大了教育經(jīng)費的投入,2014年該區(qū)投入教育經(jīng)費7000萬元,2016年投入教育經(jīng)費8470萬元.設(shè)該區(qū)這兩年投入教育經(jīng)費的年平均增長率為x,則可列方程為 .
14.如圖,菱形ABCD中,點M,N在AC上,ME⊥AD于點E,NF⊥AB于點F.若ME=3,NM=NF=2,則AN 的長為 .
15.如圖,在平面直角坐標系xOy中,直線y= x經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°得到△CBD,若點B的坐標為(2,0),則點C的坐標為 .
16.如圖,在矩形ABCD中,E是BC邊的中點,DE⊥AC,垂足為點F,連接BF,下列四個結(jié)論:①△CEF∽△ACD;② =2;③sin∠CAD= ;④AB=BF.其中正確的結(jié)論有 (寫出所有正確結(jié)論的序號).
三、解答題:本大題共8小題,共72分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
17.(10分)(1)計算: ﹣2sin60°+(1﹣ )0﹣|﹣ |.
(2)解方程:x2+6x﹣1=0.
18.(8分)若x= ﹣ ,y= + ,求x2y+xy2的值.
19.(8分)我市某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》(分別用字母A、B、C依次表示這三個誦讀材料),將A、B、C這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小華和小敏參加誦讀比賽,比賽時小華先從中隨機抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小敏從中隨機抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進行誦讀比賽.
(1)小華誦讀《弟子規(guī)》的概率是 ;
(2)請用列表法或畫樹狀圖法求小華和小敏誦讀兩個不同材料的概率.
20.(8分)如圖,某小區(qū)有一塊長為30m,寬為24m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?
21.(8分)如圖,已知AB∥CD,AD、BC相交于點E,點F在ED上,且∠CBF=∠D.
(1)求證:FB2=FE•FA;
(2)若BF=3,EF=2,求△ABE與△BEF的面積之比.
22.(8分)關(guān)于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)設(shè)x1,x2分別是方程的兩個根,且滿足x12+x22=x1x2+10,求實數(shù)m的值.
23.(10分)如圖,已知斜坡AB長為80米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.
(1)若修建的斜坡BE的坡角為45°,求平臺DE的長;(結(jié)果保留根號)
(2)一座建筑物GH距離A處36米遠(即AG為36米),小明在D處測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,求建筑物GH的高度.(結(jié)果保留根號)
24.(12分)已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿著CB方向勻速移動,速度為1cm/s;當(dāng)△PNM停止平移時,點Q也停止移動,如圖②.設(shè)移動時間為t(s)(0
(1)當(dāng)t為何值時,PQ∥AB?
(2)當(dāng)t=3時,求△QMC的面積;
(3)是否存在某一時刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.
下一頁分享>>>初三上冊數(shù)學(xué)期末試卷答案