小升初數(shù)學(xué)復(fù)習(xí)重點(diǎn)及小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)
小升初數(shù)學(xué)復(fù)習(xí)重點(diǎn)及小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)
小升初是孩子最重要的起步方向,我們需要關(guān)注怎樣的信息才能對(duì)孩子的未來(lái)有幫助呢?學(xué)習(xí)啦網(wǎng)小編告訴大家!
小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)
1.和差倍問(wèn)題
和差問(wèn)題 和倍問(wèn)題 差倍問(wèn)題
已知條件:幾個(gè)數(shù)的和與差 、幾個(gè)數(shù)的和與倍數(shù)、幾個(gè)數(shù)的差與倍數(shù)
公式適用范圍:已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系
公式 ①:(和-差)÷2=較小數(shù)
較小數(shù)+差=較大數(shù)
和-較小數(shù)=較大數(shù)
②:(和+差)÷2=較大數(shù)
較大數(shù)-差=較小數(shù)
和-較大數(shù)=較小數(shù)
和÷(倍數(shù)+1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
和-小數(shù)=大數(shù)
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
小數(shù)+差=大數(shù)
2.年齡問(wèn)題的三個(gè)基本特征:
?、賰蓚€(gè)人的年齡差是不變的;
?、趦蓚€(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
?、蹆蓚€(gè)人的年齡的倍數(shù)是發(fā)生變化的;
3.歸一問(wèn)題的基本特點(diǎn):?jiǎn)栴}中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語(yǔ)來(lái)表示。
關(guān)鍵問(wèn)題:根據(jù)題目中的條件確定并求出單一量;
4.植樹(shù)問(wèn)題
基本類(lèi)型:在直線或者不封閉的曲線上植樹(shù),兩端都植樹(shù)在直線或者不封閉的曲線上植樹(shù),兩端都不植樹(shù),在直線或者不封閉的曲線上植樹(shù),只有一端植樹(shù),封閉曲線上植樹(shù)
基本公式:棵數(shù)=段數(shù)+1
棵距×段數(shù)=總長(zhǎng) 棵數(shù)=段數(shù)-1
棵距×段數(shù)=總長(zhǎng) 棵數(shù)=段數(shù)
棵距×段數(shù)=總長(zhǎng)
關(guān)鍵問(wèn)題:確定所屬類(lèi)型,從而確定棵數(shù)與段數(shù)的關(guān)系
5.雞兔同籠問(wèn)題
基本概念:雞兔同籠問(wèn)題又稱為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);
基本思路:
①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
?、勖總€(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;
?、茉俑鶕?jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
?、侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))
?、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問(wèn)題:找出總量的差與單位量的差。
6.盈虧問(wèn)題
基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭?
基本思路:先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量.
基本題型:
①一次有余數(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差
?、诋?dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差
?、郛?dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問(wèn)題:確定對(duì)象總量和總的組數(shù)。
7.牛吃草問(wèn)題
基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。
基本特點(diǎn):原草量和新草生長(zhǎng)速度是不變的;
關(guān)鍵問(wèn)題:確定兩個(gè)不變的量。
基本公式:
生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);
總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量;
8.周期循環(huán)與數(shù)表規(guī)律
周期現(xiàn)象:事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。
關(guān)鍵問(wèn)題:確定循環(huán)周期。
閏年:一年有366天;
①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;
平年:一年有365天。
?、倌攴莶荒鼙?整除;②如果年份能被100整除,但不能被400整除;
9.平均數(shù)
基本公式:①平均數(shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
?、谄骄鶖?shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算.
②基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見(jiàn)基本公式。
10.抽屜原理
抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。
例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:
?、?=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。
抽屜原則二:如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有:
?、賙=[n/m ]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。
?、趉=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。
理解知識(shí)點(diǎn):[X]表示不超過(guò)X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問(wèn)題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
11.定義新運(yùn)算
基本概念:定義一種新的運(yùn)算符號(hào),這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。
基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過(guò)程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問(wèn)題:正確理解定義的運(yùn)算符號(hào)的意義。
注意事項(xiàng):①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。
?、诿總€(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。
12.數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:通項(xiàng)公式:an = a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1) 公差;
數(shù)列和公式:sn,= (a1+ an)n2;
數(shù)列和=(首項(xiàng)+末項(xiàng))項(xiàng)數(shù)2;
項(xiàng)數(shù)公式:n= (an+ a1)d+1;
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))公差+1;
公差公式:d =(an-a1))(n-1);
公差=(末項(xiàng)-首項(xiàng))(項(xiàng)數(shù)-1);
關(guān)鍵問(wèn)題:確定已知量和未知量,確定使用的公式;
13.二進(jìn)制及其應(yīng)用
十進(jìn)制:用0~9十個(gè)數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。
=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+……+A3102+A2101+A1100
注意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制:用0~1兩個(gè)數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。
(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7
+……+A322+A221+A120
注意:An不是0就是1。
十進(jìn)制化成二進(jìn)制:
?、俑鶕?jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個(gè)數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫(xiě)出即可。
?、谙日页霾淮笥谠摂?shù)的2的n次方,再求它們的差,再找不大于這個(gè)差的2的n次方,依此方法一直找到差為0,按照二進(jìn)制展開(kāi)式特點(diǎn)即可寫(xiě)出。
14.加法乘法原理和幾何計(jì)數(shù)
加法原理:如果完成一件任務(wù)有n類(lèi)方法,在第一類(lèi)方法中有m1種不同方法,在第二類(lèi)方法中有m2種不同方法……,在第n類(lèi)方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問(wèn)題:確定工作的分類(lèi)方法。
基本特征:每一種方法都可完成任務(wù)。
乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2....... ×mn種不同的方法。
關(guān)鍵問(wèn)題:確定工作的完成步驟。
基本特征:每一步只能完成任務(wù)的一部分。
直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線特點(diǎn):沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度。
線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn):有兩個(gè)端點(diǎn),有長(zhǎng)度。
射線:把直線的一端無(wú)限延長(zhǎng)。
射線特點(diǎn):只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。
①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);
?、跀?shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);
?、蹟?shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù):
④數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
15.質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。
合數(shù):一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。
質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1
求約數(shù)個(gè)數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。
16.約數(shù)與倍數(shù)
約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。
最大公約數(shù)的性質(zhì):
1、 幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。
2、 幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。
3、 幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。
4、 幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。
例如:12的約數(shù)有1、2、3、4、6、12;
18的約數(shù)有:1、2、3、6、9、18;
那么12和18的公約數(shù)有:1、2、3、6;
那么12和18最大的公約數(shù)是:6,記作(12,18)=6;
求最大公約數(shù)基本方法:
1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。
2、短除法:先找公有的約數(shù),然后相乘。
3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。
公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。
12的倍數(shù)有:12、24、36、48……;
18的倍數(shù)有:18、36、54、72……;
那么12和18的公倍數(shù)有:36、72、108……;
那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
最小公倍數(shù)的性質(zhì):
1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。
2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。
求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法
17.數(shù)的整除
一、基本概念和符號(hào):
1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒(méi)有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號(hào):整除符號(hào)“|”,不能整除符號(hào)“”;因?yàn)榉?hào)“∵”,所以的符號(hào)“∴”;
二、整除判斷方法:
1. 能被2、5整除:末位上的數(shù)字能被2、5整除。
2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。
3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。
4. 能被3、9整除:各個(gè)數(shù)位上數(shù)字的和能被3、9整除。
5. 能被7整除:
?、倌┤簧蠑?shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。
?、谥鸫稳サ糇詈笠晃粩?shù)字并減去末位數(shù)字的2倍后能被7整除。
6. 能被11整除:
?、倌┤簧蠑?shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。
?、谄鏀?shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。
?、壑鸫稳サ糇詈笠晃粩?shù)字并減去末位數(shù)字后能被11整除。
7. 能被13整除:
?、倌┤簧蠑?shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。
②逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。
三、整除的性質(zhì):
1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。
18.余數(shù)及其應(yīng)用
基本概念:對(duì)任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0
余數(shù)的性質(zhì):
?、儆鄶?shù)小于除數(shù)。
?、谌鬭、b除以c的余數(shù)相同,則c|a-b或c|b-a。
?、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
?、躠與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。
19.余數(shù)、同余與周期
一、同余的定義:
?、偃魞蓚€(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。
②已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作a≡b(mod m),讀作a同余于b模m。
二、同余的性質(zhì):
?、僮陨硇裕篴≡a(mod m);
②對(duì)稱性:若a≡b(mod m),則b≡a(mod m);
?、蹅鬟f性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m)
?、芎筒钚裕喝鬭≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
?、蕹朔叫裕喝鬭≡b(mod m),則an≡bn(mod m);
?、咄缎?若a≡ b(mod m),整數(shù)c,則a×c≡ b×c(mod m×c);
三、關(guān)于乘方的預(yù)備知識(shí):
?、偃鬉=a×b,則MA=Ma×b=(Ma)b
?、谌鬊=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除后的余數(shù)特征:
①一個(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則M≡n(mod 9)或(mod 3);
?、谝粋€(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(mod p)。
20.分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用
基本概念與性質(zhì):
分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。
分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。
百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。
常用方法:
?、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。
?、趯?duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。
?、坜D(zhuǎn)化思維方法:把一類(lèi)應(yīng)用題轉(zhuǎn)化成另一類(lèi)應(yīng)用題進(jìn)行解答。最常見(jiàn)的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見(jiàn)的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。
?、芗僭O(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。
⑤量不變思維方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。
?、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進(jìn)行處理。
?、酀舛扰浔确ǎ阂话銘?yīng)用于總量和分量都發(fā)生變化的狀況。
21.分?jǐn)?shù)大小的比較
基本方法:
①通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。
?、谕ǚ址帜阜ǎ菏顾蟹?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。
?、刍鶞?zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。
?、芊肿雍头帜复笮”容^法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。
?、荼堵时容^法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見(jiàn)同倍率變化規(guī)律)
?、揶D(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。
?、弑稊?shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。
⑧大小比較法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。
?、岬箶?shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。
?、饣鶞?zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。
22.完全平方數(shù)
完全平方數(shù)特征:
1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
4. 約數(shù)個(gè)數(shù)為奇數(shù);反之成立。
5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。
6. 奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。
7. 兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
23.比和比例
比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。
比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。
比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。
比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或
比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。
正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時(shí)),則A與B成正比。
反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時(shí)),則A與B成反比。
比例尺:圖上距離與實(shí)際距離的比叫做比例尺。
按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。
24.綜合行程
基本概念:行程問(wèn)題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.
基本公式:路程=速度×時(shí)間;路程÷時(shí)間=速度;路程÷速度=時(shí)間
關(guān)鍵問(wèn)題:確定運(yùn)動(dòng)過(guò)程中的位置和方向。
相遇問(wèn)題:速度和×相遇時(shí)間=相遇路程(請(qǐng)寫(xiě)出其他公式)
追及問(wèn)題:追及時(shí)間=路程差÷速度差(寫(xiě)出其他公式)
流水問(wèn)題:順?biāo)谐?(船速+水速)×順?biāo)畷r(shí)間
逆水行程=(船速-水速)×逆水時(shí)間
順?biāo)俣?船速+水速
逆水速度=船速-水速
靜水速度=(順?biāo)俣?逆水速度)÷2
水 速=(順?biāo)俣?逆水速度)÷2
流水問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。
過(guò)橋問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。
主要方法:畫(huà)線段圖法
基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。
25.工程問(wèn)題
基本公式:
?、俟ぷ骺偭?工作效率×工作時(shí)間
②工作效率=工作總量÷工作時(shí)間
③工作時(shí)間=工作總量÷工作效率
基本思路:
①假設(shè)工作總量為“1”(和總工作量無(wú)關(guān));
?、诩僭O(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間.
關(guān)鍵問(wèn)題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。
經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。
26.邏輯推理
基本方法簡(jiǎn)介:
①條件分析—假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說(shuō)明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過(guò)程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。
②條件分析—列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來(lái)輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長(zhǎng)方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。
③條件分析——圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒(méi)有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒(méi)有表示不認(rèn)識(shí)。
?、苓壿嬘?jì)算:在推理的過(guò)程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為推理提供一個(gè)新的判斷篩選條件。
⑤簡(jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問(wèn)題的解決。
27.幾何面積
基本思路:
在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。
常用方法:
1. 連輔助線方法
2. 利用等底等高的兩個(gè)三角形面積相等。
3. 大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說(shuō)的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。
4. 利用特殊規(guī)律
?、俚妊苯侨切?,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)
?、谔菪螌?duì)角線連線后,兩腰部分面積相等。
?、蹐A的面積占外接正方形面積的78.5%。
28.立體圖形
長(zhǎng) 方 體
8個(gè)頂點(diǎn);6個(gè)面;相對(duì)的面相等;12條棱;相對(duì)的棱相等; S=2(ab+ah+bh) V=abh =Sh
正 方 體
8個(gè)頂點(diǎn);6個(gè)面;所有面相等;12條棱;所有棱相等; S=6a2 V=a3
圓柱體
上下兩底是平行且相等的圓;側(cè)面展開(kāi)后是長(zhǎng)方形; S=S側(cè)+2S底 S側(cè)=Ch V=Sh
圓錐體
下底是圓;只有一個(gè)頂點(diǎn);l:母線,頂點(diǎn)到底圓周上任意一點(diǎn)的距離; S=S側(cè)+S底
S側(cè)=rl V=Sh
球體 圓心到圓周上任意一點(diǎn)的距離是球的半徑。 S=4r2 V=r3
29.時(shí)鐘問(wèn)題—快慢表問(wèn)題
基本思路:
1、 按照行程問(wèn)題中的思維方法解題;
2、 不同的表當(dāng)成速度不同的運(yùn)動(dòng)物體;
3、 路程的單位是分格(表一周為60分格);
4、 時(shí)間是標(biāo)準(zhǔn)表所經(jīng)過(guò)的時(shí)間;
合理利用行程問(wèn)題中的比例關(guān)系;
小升初數(shù)學(xué)復(fù)習(xí)重點(diǎn)
一、小學(xué)數(shù)學(xué)幾何形體周長(zhǎng) 面積 體積計(jì)算公式
長(zhǎng)方形的周長(zhǎng)=(長(zhǎng)+寬)×2 C=(a+b)×2
正方形的周長(zhǎng)=邊長(zhǎng)×4 C=4a
長(zhǎng)方形的面積=長(zhǎng)×寬 S=ab
正方形的面積=邊長(zhǎng)×邊長(zhǎng) S=a.a= a
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
圓的周長(zhǎng)=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2. 公式 S= a×h÷2
正方形的面積=邊長(zhǎng)×邊長(zhǎng) 公式 S= a×a
長(zhǎng)方形的面積=長(zhǎng)×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內(nèi)角和:三角形的內(nèi)角和=180度.
長(zhǎng)方體的體積=長(zhǎng)×寬×高 公式:V=abh
長(zhǎng)方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) 公式:V=aaa
圓的周長(zhǎng)=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側(cè))面積:圓柱的表(側(cè))面積等于底面的周長(zhǎng)乘高.公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長(zhǎng)乘高再加上兩頭的圓的面積. 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高.公式:V=Sh
圓錐的體積=1/3底面×積高.公式:V=1/3Sh
分?jǐn)?shù)的加、減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變.異分母的分?jǐn)?shù)相加減,先通分,然后再加減.
分?jǐn)?shù)的乘法則:用分子的積做分子,用分母的積做分母.
二、單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世紀(jì)=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時(shí) 1時(shí)=60分
1分=60秒 1時(shí)=3600秒
三、數(shù)量關(guān)系計(jì)算公式方面
1、每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù)總數(shù)÷份數(shù)=每份數(shù)
2、1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù)幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、速度×時(shí)間=路程 路程÷速度=時(shí)間 路程÷時(shí)間=速度
4、單價(jià)×數(shù)量=總價(jià) 總價(jià)÷單價(jià)=數(shù)量 總價(jià)÷數(shù)量=單價(jià)
5、工作效率×工作時(shí)間=工作總量 工作總量÷工作效率=工作時(shí)間工作總量÷工作時(shí)間=工作效率
6、加數(shù)+加數(shù)=和 和-一個(gè)加數(shù)=另一個(gè)加數(shù)
7、被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù)
8、因數(shù)×因數(shù)=積 積÷一個(gè)因數(shù)=另一個(gè)因數(shù)
9、被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù)
四、算術(shù)方面
1.加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變.
2.加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或先把后兩個(gè)數(shù)相加,再同第
三個(gè)數(shù)相加,和不變.
3.乘法交換律:兩數(shù)相乘,交換因數(shù)的位置,積不變.
4.乘法結(jié)合律:三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或先把后兩個(gè)數(shù)相乘,再和第三個(gè)數(shù)相乘,它們的積不變.
5.乘法分配律:兩個(gè)數(shù)的和同一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別同這個(gè)數(shù)相乘,再把兩個(gè)積相加,結(jié)果不變.如:(2+4)×5=2×5+4×5.
6.除法的性質(zhì):在除法里,被除數(shù)和除數(shù)同時(shí)擴(kuò)大(或縮小)相同的倍數(shù),商不變.0除以任何不是0的數(shù)都得0.
7.等式:等號(hào)左邊的數(shù)值與等號(hào)右邊的數(shù)值相等的式子叫做等式.等式的基本性質(zhì):等式兩邊同時(shí)乘以(或除以)一個(gè)相同的數(shù),等式仍然成立.
8.方程式:含有未知數(shù)的等式叫方程式.
9.一元一次方程式:含有一個(gè)未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式.
學(xué)會(huì)一元一次方程式的例法及計(jì)算.即例出代有χ的算式并計(jì)算.
10.分?jǐn)?shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分?jǐn)?shù).
11.分?jǐn)?shù)的加減法則:同分母的分?jǐn)?shù)相加減,只把分子相加減,分母不變.異分母的分?jǐn)?shù)相加減,先通分,然后再加減.
12.分?jǐn)?shù)大小的比較:同分母的分?jǐn)?shù)相比較,分子大的大,分子小的小.異分母的分?jǐn)?shù)相比較,先通分然后再比較;若分子相同,分母大的反而小.
13.分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變.
14.分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作為分母.
15.分?jǐn)?shù)除以整數(shù)(0除外),等于分?jǐn)?shù)乘以這個(gè)整數(shù)的倒數(shù).
16.真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù).
17.假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù)叫做假分?jǐn)?shù).假分?jǐn)?shù)大于或等于1.
18.帶分?jǐn)?shù):把假分?jǐn)?shù)寫(xiě)成整數(shù)和真分?jǐn)?shù)的形式,叫做帶分?jǐn)?shù).
19.分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以同一個(gè)數(shù)(0除外),分?jǐn)?shù)的大小不變.
20.一個(gè)數(shù)除以分?jǐn)?shù),等于這個(gè)數(shù)乘以分?jǐn)?shù)的倒數(shù).
21.甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù).
五、特殊問(wèn)題
和差問(wèn)題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問(wèn)題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者 和-小數(shù)=大數(shù))
差倍問(wèn)題
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或 小數(shù)+差=大數(shù))
植樹(shù)問(wèn)題
1 非封閉線路上的植樹(shù)問(wèn)題主要可分為以下三種情形:
(1)如果在非封閉線路的兩端都要植樹(shù),那么:
株數(shù)=段數(shù)+1=全長(zhǎng)÷株距-1
全長(zhǎng)=株距×(株數(shù)-1)
株距=全長(zhǎng)÷(株數(shù)-1)
(2)如果在非封閉線路的一端要植樹(shù),另一端不要植樹(shù),那么:
株數(shù)=段數(shù)=全長(zhǎng)÷株距
全長(zhǎng)=株距×株數(shù)
株距=全長(zhǎng)÷株數(shù)
(3)如果在非封閉線路的兩端都不要植樹(shù),那么:
株數(shù)=段數(shù)-1=全長(zhǎng)÷株距-1
全長(zhǎng)=株距×(株數(shù)+1)
株距=全長(zhǎng)÷(株數(shù)+1)
2 封閉線路上的植樹(shù)問(wèn)題的數(shù)量關(guān)系如下
株數(shù)=段數(shù)=全長(zhǎng)÷株距
全長(zhǎng)=株距×株數(shù)
株距=全長(zhǎng)÷株數(shù)
盈虧問(wèn)題
(盈+虧)÷兩次分配量之差=參加分配的份數(shù)
(大盈-小盈)÷兩次分配量之差=參加分配的份數(shù)
(大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)
相遇問(wèn)題
相遇路程=速度和×相遇時(shí)間
相遇時(shí)間=相遇路程÷速度和
速度和=相遇路程÷相遇時(shí)間
追及問(wèn)題
追及距離=速度差×追及時(shí)間
追及時(shí)間=追及距離÷速度差
速度差=追及距離÷追及時(shí)間
流水問(wèn)題
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式:
甲船順?biāo)俣?乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
后(前)船靜水速度-前(后)船靜水速度=兩船距離縮小(拉大)速度
濃度問(wèn)題
溶質(zhì)的重量+溶劑的重量=溶液的重量
溶質(zhì)的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質(zhì)的重量
溶質(zhì)的重量÷濃度=溶液的重量
利潤(rùn)與折扣問(wèn)題
利潤(rùn)=售出價(jià)-成本
利潤(rùn)率=利潤(rùn)÷成本×100%=(售出價(jià)÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實(shí)際售價(jià)÷原售價(jià)×100%(折扣<1)
利息=本金×利率×時(shí)間
稅后利息=本金×利率×時(shí)間×(1-5%)
工程問(wèn)題
(1)一般公式:
工作效率×工作時(shí)間=工作總量
工作總量÷工作時(shí)間=工作效率
工作總量÷工作效率=工作時(shí)間
(2)用假設(shè)工作總量為“1”的方法解工程問(wèn)題的公式:
1÷工作時(shí)間=單位時(shí)間內(nèi)完成工作總量的幾分之幾
1÷單位時(shí)間能完成的幾分之幾=工作時(shí)間