高考數(shù)學(xué)常考的易錯(cuò)知識(shí)點(diǎn)歸納
高考數(shù)學(xué)??嫉囊族e(cuò)知識(shí)點(diǎn)歸納2023
學(xué)習(xí)高中數(shù)學(xué)的過程會(huì)遇到這樣的問題,平時(shí)會(huì)做的題拿不到分,解答題思路對(duì)了但卻總是寫不全面,拿不到滿分,我們不妨總結(jié)一些數(shù)學(xué)的易錯(cuò)點(diǎn)吧。下面是小編為大家整理的關(guān)于高考數(shù)學(xué)??嫉囊族e(cuò)知識(shí)點(diǎn)歸納,歡迎大家來閱讀。
高考數(shù)學(xué)易錯(cuò)知識(shí)點(diǎn)
函數(shù)與導(dǎo)數(shù)
1.易錯(cuò)點(diǎn)求函數(shù)定義域忽視細(xì)節(jié)致誤
錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。
在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):
(1)分母不為0;
(2)偶次被開放式非負(fù);
(3)真數(shù)大于0;
(4)0的0次冪沒有意義。
函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。
2.易錯(cuò)點(diǎn)帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤
錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:
一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;
二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問題,尋找解決問題的方案。
對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
3.易錯(cuò)點(diǎn)求函數(shù)奇偶性的常見錯(cuò)誤
錯(cuò)因分析:求函數(shù)奇偶性的常見錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。
在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。
4.易錯(cuò)點(diǎn)抽象函數(shù)中推理不嚴(yán)密致誤
錯(cuò)因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來的,在解決問題時(shí),可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。
解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問題的突破口。
抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。
5.易錯(cuò)點(diǎn)函數(shù)零點(diǎn)定理使用不當(dāng)致誤
錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。
函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問題。
6.易錯(cuò)點(diǎn)混淆兩類切線致誤
錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。因此求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。
7.易錯(cuò)點(diǎn)混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤
錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。
研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
8.易錯(cuò)點(diǎn)導(dǎo)數(shù)與極值關(guān)系不清致誤
錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。
出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。
高考數(shù)學(xué)70個(gè)易錯(cuò)點(diǎn)
1.集合中元素的特征認(rèn)識(shí)不明。
元素具有確定性,無序性,互異性三種性質(zhì)。
2.遺忘空集。
A含于B時(shí)求集合A,容易遺漏A可以為空集的情況。比如A為(x-1)的平方>0,x=1時(shí)A為空集,也屬于B.求子集或真子集個(gè)數(shù)時(shí)容易漏掉空集。
3.忽視集合中元素的互異性。
4.充分必要條件顛倒致誤。
必要不充分和充分不必要的區(qū)別——:比如p可以推出q,而q推不出p,就是充分不必要條件,p不可以推出q,而q卻可以推出p,就是必要不充分。
5.對(duì)含有量詞的命題否定不當(dāng)。
含有量詞的命題的否定,先否定量詞,再否定結(jié)論。
6.求函數(shù)定義域忽視細(xì)節(jié)致誤。
根號(hào)內(nèi)的值必須不能等于0,對(duì)數(shù)的真數(shù)大于等于零,等等。
7.函數(shù)單調(diào)性的判斷錯(cuò)誤。
這個(gè)就得注意函數(shù)的符號(hào),比如f(-x)的單調(diào)性與原函數(shù)相反。
8.函數(shù)奇偶性判定中常見的兩種錯(cuò)誤。
判定主要注意1,定義域必須關(guān)于原點(diǎn)對(duì)稱,2,注意奇偶函數(shù)的判斷定理,化簡(jiǎn)要小心負(fù)號(hào)。
9.求解函數(shù)值域時(shí)忽視自變量的取值范圍。
10.抽象函數(shù)中推理不嚴(yán)謹(jǐn)致誤。
11.不能實(shí)現(xiàn)二次函數(shù),一元二次方程和一元二次不等式的相互轉(zhuǎn)換。
二次函數(shù)令y為0→方程→看題目要求是什么→要么方程大于小于0,要么刁塔(那個(gè)小三角形)b的平方-4ac大于等于小于0種種。
12.比較大小時(shí),對(duì)指數(shù)函數(shù),對(duì)數(shù)函數(shù),和冪函數(shù)的性質(zhì)記憶模糊導(dǎo)致失誤。
13.忽略對(duì)數(shù)函數(shù)單調(diào)性的限制條件導(dǎo)致失誤。
14.函數(shù)零點(diǎn)定理使用不當(dāng)致誤。
f(a)xf(b)<0,則區(qū)間ab上存在零點(diǎn)。
15.忽略冪函數(shù)的定義域而致錯(cuò)。
x的二分之一次方定義域?yàn)?到正無窮。
16.錯(cuò)誤理解導(dǎo)數(shù)的定義致誤。
17.導(dǎo)數(shù)與極值關(guān)系不清致誤。
f‘派x為0解出的根不一定是極值這個(gè)要注意。
18.導(dǎo)數(shù)與單調(diào)性關(guān)系不清致誤。
19.誤把定點(diǎn)作為切點(diǎn)致誤。
20.計(jì)算定積分忽視細(xì)節(jié)致誤。
21.定積分幾何意義不明致誤。
22.忽視角的范圍。
23.圖像變換方向把握不準(zhǔn)。
24.忽視正。余弦函數(shù)的有界性。
25.解三角形時(shí)出現(xiàn)漏解或增解。
26.向量加減法的幾何意義不明致誤。
27.忽視平面向量基本定理的使用條件致誤。
28.向量的模與數(shù)量積的關(guān)系不清致誤。
29.判別不清向量的夾角。
30.忽略an=sn—sn—1的成立條件。
31.等比數(shù)列求和時(shí),忽略對(duì)q是否為1的討論。
32.數(shù)列項(xiàng)數(shù)不清導(dǎo)致錯(cuò)誤。
33.考慮問題不全面而導(dǎo)致失誤。
34.用錯(cuò)位相減法求和時(shí)處理不當(dāng)。
35.忽視變形轉(zhuǎn)化的等價(jià)性。
36.忽視基本不等式應(yīng)用條件。
37.不等式解集的表述形式錯(cuò)誤。
38.恒成立問題錯(cuò)誤。
39.目標(biāo)函數(shù)理解錯(cuò)誤。
40.由三視圖還原空間幾何體不準(zhǔn)確致誤。
41.空間點(diǎn),線,面位置關(guān)系不清致誤。
42.證明過程不嚴(yán)謹(jǐn)致誤。
43.忽視了數(shù)量積和向量夾角的關(guān)系而致誤。
44.忽視異面直線所成角的范圍而致錯(cuò)。
45.用向量法求線面角時(shí)理解有誤而致錯(cuò)。
46.弄錯(cuò)向量夾角與二面角的關(guān)系致誤。
47.解折疊問題時(shí)沒有理順折疊前后圖形中的不變量和改變量致誤。
48.忽視斜率不存在的情況。
49.忽視圓存在的條件。
50.忽視零截距致誤。
51.弦長(zhǎng)公式使用不合理導(dǎo)致解題錯(cuò)誤。
52.焦點(diǎn)位置不確定導(dǎo)致漏解。
53.忽視限制條件求錯(cuò)軌跡方程。
54.解決直線與圓錐曲線的相交問題時(shí)忽視大于零的情況。
55.兩個(gè)原理不清而致錯(cuò)。
56.排列組合問題錯(cuò)位或出現(xiàn)重復(fù),遺漏致誤。
57.忽視特殊數(shù)字或特殊位置而致錯(cuò)。
58.混淆均勻分組與不均勻分組致錯(cuò)。
59.不相鄰問題方法不當(dāng)而致錯(cuò)。
60.混淆二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)而致誤。
61.混淆頻率與頻率/組距致誤。
62.分布列的性質(zhì)把握不準(zhǔn)致錯(cuò)。
63.混淆獨(dú)立事件與互斥事件而致錯(cuò)。
64.求分布列錯(cuò)誤而致均值或方差錯(cuò)誤。
65.正態(tài)分布中概率計(jì)算錯(cuò)誤。
66.忽視類比的對(duì)應(yīng)關(guān)系致誤。
67.反證法中假設(shè)不準(zhǔn)確導(dǎo)致證明錯(cuò)誤。
68.程序框圖中執(zhí)行次數(shù)判斷錯(cuò)誤。
69.對(duì)復(fù)數(shù)的概念認(rèn)識(shí)不清致誤。
70.歸納假設(shè)使用不當(dāng)致誤。
高中數(shù)學(xué)易錯(cuò)點(diǎn)總結(jié)
一、集合與簡(jiǎn)易邏輯
1.集合的元素具有確定性、無序性和互異性.
2.對(duì)集合 , 時(shí),必須注意到“極端”情況: 或 ;求集合的子集時(shí)是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.對(duì)于含有 個(gè)元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個(gè)數(shù)依次為 4.“交的補(bǔ)等于補(bǔ)的并,即 ”;“并的補(bǔ)等于補(bǔ)的交,即 ”.
5.判斷命題的真假 關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”.
7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià).反證法分為三步:假設(shè)、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” .
8.充要條件
二、函 數(shù)
1.指數(shù)式、對(duì)數(shù)式
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合 中的元素必有像,但第二個(gè)集合 中的元素不一定有原像( 中元素的像有且僅有下一個(gè),但 中元素的原像可能沒有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集”.
(2)函數(shù)圖像與 軸垂線至多一個(gè)公共點(diǎn),但與 軸垂線的公共點(diǎn)可能沒有,也可任意個(gè).
(3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像.
3.單調(diào)性和奇偶性
(1)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同.偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反.注意:(1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等.對(duì)于偶函數(shù)而言有: .
(2)若奇函數(shù)定義域中有0,則必有 .即 的定義域時(shí), 是 為奇函數(shù)的必要非充分條件.
3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等.
(4)既奇又偶函數(shù)有無窮多個(gè)( ,定義域是關(guān)于原點(diǎn)對(duì)稱的任意一個(gè)數(shù)集).
(7)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”.復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”.復(fù)合函數(shù)要考慮定義域的變化.(即復(fù)合有意義)
4.對(duì)稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)
(1)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱.推廣一:如果函數(shù) 對(duì)于一切 ,都有 成立,那么 的圖像關(guān)于直線 (由“ 和的一半 確定”)對(duì)稱.推廣二:函數(shù) , 的圖像關(guān)于直線 (由 確定)對(duì)稱.
(2)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱.
(3)函數(shù) 與函數(shù) 的圖像關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱.推廣:曲線 關(guān)于直線 的對(duì)稱曲線是 ;曲線 關(guān)于直線 的對(duì)稱曲線是 .
(5)類比“三角函數(shù)圖像”得:若 圖像有兩條對(duì)稱軸 ,則 必是周期函數(shù),且一周期為 .如果 是R上的周期函數(shù),且一個(gè)周期為 ,那么 .特別:若 恒成立,則 .若 恒成立,則 .若 恒成立,則 .三、數(shù) 列1.數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前 項(xiàng)和公式的關(guān)系: (必要時(shí)請(qǐng)分類討論).
注意:
2.等差數(shù)列 中:
(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.
(2) 兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列.
(3) 仍成等差數(shù)列.(4“首正”的遞減等差數(shù)列中,前 項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前 項(xiàng)和的最小值是所有非正項(xiàng)之和;
(5)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”-“奇數(shù)項(xiàng)和”=總項(xiàng)數(shù)的一半與其公差的`積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”-“偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng).
(6)兩數(shù)的等差中項(xiàng)惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),??紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.
(7)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式).
3.等比數(shù)列 中:
(1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性.
(2) 成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列.
(3)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列.
(4) 成等比數(shù)列.
(5)“首大于1”的正值遞減等比數(shù)列中,前 項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前 項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;
(6)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”=“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和.
(7)并非任何兩數(shù)總有等比中項(xiàng).僅當(dāng)實(shí)數(shù) 同號(hào)時(shí),實(shí)數(shù) 存在等比中項(xiàng).對(duì)同號(hào)兩實(shí)數(shù) 的等比中項(xiàng)不僅存在,而且有一對(duì) .也就是說,兩實(shí)數(shù)要么沒有等比中項(xiàng)(非同號(hào)時(shí)),如果有,必有一對(duì)(同號(hào)時(shí)).在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.
(8)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式).
4.等差數(shù)列與等比數(shù)列的聯(lián)系
(1)如果數(shù)列 成等差數(shù)列,那么數(shù)列 ( 總有意義)必成等比數(shù)列.
(2)如果數(shù)列 成等比數(shù)列,那么數(shù)列 必成等差數(shù)列.
(3)如果數(shù)列 既成等差數(shù)列又成等比數(shù)列,那么數(shù)列 是非零常數(shù)數(shù)列;但數(shù)列 是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件.
(4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù).如果一個(gè)等差數(shù)列與一個(gè)等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列.
注意:(1)公共項(xiàng)僅是公共的項(xiàng),其項(xiàng)數(shù)不一定相同,即研究 .但也有少數(shù)問題中研究 ,這時(shí)既要求項(xiàng)相同,也要求項(xiàng)數(shù)相同.(2)三(四)個(gè)數(shù)成等差(比)的中項(xiàng)轉(zhuǎn)化和通項(xiàng)轉(zhuǎn)化法.