亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

      高二數(shù)學(xué)老師講解的知識點歸納

      時間: 贊銳0 分享

      學(xué)習(xí)上的自主意識不可能有外界的力量強加于你,只有自己才能夠讓自己的學(xué)習(xí)行為產(chǎn)生自覺性,因此變“要我學(xué)為我要學(xué)”在高二時期顯得更為重要。以下是小編給大家整理的高二數(shù)學(xué)老師講解的知識點歸納,希望大家能夠喜歡!

      高二數(shù)學(xué)老師講解的知識點歸納1

      直線的傾斜角:

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

      直線的斜率:

      ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

      ②過兩點的直線的斜率公式。

      注意:

      (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關(guān);

      (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

      直線方程:

      1.點斜式:y-y0=k(x-x0)

      (x0,y0)是直線所通過的已知點的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點的橫坐標(biāo);y是因變量,直線上任意一點的縱坐標(biāo)。

      2.斜截式:y=kx+b

      直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。

      3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

      如果x1=x2,y1=y2,那么兩點就重合了,相當(dāng)于只有一個已知點了,這樣不能確定一條直線。

      如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。

      如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

      4.截距式x/a+y/b=1

      對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

      5.一般式;Ax+By+C=0

      將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。

      高二數(shù)學(xué)老師講解的知識點歸納2

      極值的定義:

      (1)極大值:一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)

      (2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。

      極值的性質(zhì):

      (1)極值是一個局部概念,由定義知道,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小;

      (2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個;

      (3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;

      (4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點,而使函數(shù)取得值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。

      求函數(shù)f(x)的極值的步驟:

      (1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(x);

      (2)求方程f′(x)=0的根;

      (3)用函數(shù)的導(dǎo)數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(x)在方程根左右的值的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),則f(x)在這個根處無極值。

      高二數(shù)學(xué)老師講解的知識點歸納3

      一、集合概念

      (1)集合中元素的特征:確定性,互異性,無序性。

      (2)集合與元素的關(guān)系用符號=表示。

      (3)常用數(shù)集的符號表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實數(shù)集。

      (4)集合的表示法:列舉法,描述法,韋恩圖。

      (5)空集是指不含任何元素的集合。

      空集是任何集合的子集,是任何非空集合的真子集。

      函數(shù)

      一、映射與函數(shù):

      (1)映射的概念:(2)一一映射:(3)函數(shù)的概念:

      二、函數(shù)的三要素:

      相同函數(shù)的判斷方法:①對應(yīng)法則;②定義域(兩點必須同時具備)

      (1)函數(shù)解析式的求法:

      ①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

      (2)函數(shù)定義域的求法:

      ①含參問題的定義域要分類討論;

      ②對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。

      (3)函數(shù)值域的求法:

      ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;

      ②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;

      ④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

      ⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;

      ⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;

      ⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

      ⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。

      高二數(shù)學(xué)老師講解的知識點歸納相關(guān)文章

      高二數(shù)學(xué)知識點總結(jié)

      高二數(shù)學(xué)知識點總結(jié)歸納

      高二數(shù)學(xué)考點知識點總結(jié)復(fù)習(xí)大綱

      高二數(shù)學(xué)知識點歸納總結(jié)

      高二數(shù)學(xué)整體知識總結(jié)

      高二數(shù)學(xué)知識點歸納

      高二數(shù)學(xué)知識點復(fù)習(xí)總結(jié)

      高二數(shù)學(xué)知識點總結(jié)全

      高二數(shù)學(xué)必背知識點總結(jié)

      高二數(shù)學(xué)知識點全總結(jié)

      高二數(shù)學(xué)老師講解的知識點歸納

      學(xué)習(xí)上的自主意識不可能有外界的力量強加于你,只有自己才能夠讓自己的學(xué)習(xí)行為產(chǎn)生自覺性,因此變“要我學(xué)為我要學(xué)”在高二時期顯得更為重要。以下是小編給大家整理的高二數(shù)學(xué)老師講解的知識點歸納,希望大家能夠喜
      推薦度:
      點擊下載文檔文檔為doc格式

      精選文章

      • 高二數(shù)學(xué)單元總知識的分析
        高二數(shù)學(xué)單元總知識的分析

        高二階段是打基礎(chǔ)的關(guān)鍵一年,除了要把高一所學(xué)的知識和技能及時應(yīng)用到高二的學(xué)習(xí)之上,還得把高二的知識和技能逐步吸收和掌握,為高三復(fù)習(xí)打好基

      • 高二數(shù)學(xué)高考必考知識點解析
        高二數(shù)學(xué)高考必考知識點解析

        如何把高一階段所學(xué)的知識應(yīng)用到高二所學(xué)的知識中,又把高二的知識和技能熟練的掌握在自己的腦海里,是高二一學(xué)年里需要努力的方向。以下是小編給

      • 高二數(shù)學(xué)必修必拿下知識點總結(jié)
        高二數(shù)學(xué)必修必拿下知識點總結(jié)

        在高二階段,學(xué)習(xí)的任務(wù)是打好基礎(chǔ),把各學(xué)科的基礎(chǔ)知識和技能掌握清楚,在這個目標(biāo)達(dá)到后,由余力的學(xué)生可以適當(dāng)提高層次,多做些能力題,以提高

      • 高二數(shù)學(xué)復(fù)習(xí)的重要點及知識點總結(jié)
        高二數(shù)學(xué)復(fù)習(xí)的重要點及知識點總結(jié)

        只要在學(xué)習(xí)過程中重視思考問題和探究問題,你的能力就會在不知不覺中得到提高,為高三復(fù)習(xí)階段深化知識網(wǎng)絡(luò)結(jié)構(gòu)提供基礎(chǔ)。以下是小編給大家整理的

      1071234