亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

      高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合

      時(shí)間: 楚琪0 分享

      總結(jié)就是把一個(gè)時(shí)間段取得的成績(jī)、存在的問題及得到的經(jīng)驗(yàn)和教訓(xùn)進(jìn)行一次全面系統(tǒng)的總結(jié)的書面材料,通過它可以正確認(rèn)識(shí)以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),下面是小編給大家?guī)淼?a href='http://lpo831.com/xuexiff/gaoershuxue/' target='_blank'>高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合,以供大家參考!

      高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合

      1、向量的加法

      向量的加法滿足平行四邊形法則和三角形法則。

      AB+BC=AC。

      a+b=(x+x',y+y')。

      a+0=0+a=a。

      向量加法的運(yùn)算律:

      交換律:a+b=b+a;

      結(jié)合律:(a+b)+c=a+(b+c)。

      2、向量的減法

      如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

      AB-AC=CB. 即“共同起點(diǎn),指向被減”

      a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

      3、數(shù)乘向量

      實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

      當(dāng)λ>0時(shí),λa與a同方向;

      當(dāng)λ<0時(shí),λa與a反方向;

      當(dāng)λ=0時(shí),λa=0,方向任意。

      當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

      注:按定義知,如果λa=0,那么λ=0或a=0。

      實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。

      當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來的∣λ∣倍;

      當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

      數(shù)與向量的乘法滿足下面的運(yùn)算律

      結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

      向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

      數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

      數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

      4、向量的的數(shù)量積

      定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

      定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

      向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

      向量的數(shù)量積的運(yùn)算率

      a·b=b·a(交換率);

      (a+b)·c=a·c+b·c(分配率);

      向量的數(shù)量積的性質(zhì)

      a·a=|a|的平方。

      a⊥b 〈=〉a·b=0。

      |a·b|≤|a|·|b|。

      高二數(shù)學(xué)最新知識(shí)點(diǎn)總結(jié)歸納大全

      柱體、錐體、臺(tái)體的表面積與體積

      (1)幾何體的表面積為幾何體各個(gè)面的面積的'和。

      (2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)

      (3)柱體、錐體、臺(tái)體的體積公式

      (4)球體的表面積和體積公式:V=;S=

      4、空間點(diǎn)、直線、平面的位置關(guān)系

      公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。

      應(yīng)用:判斷直線是否在平面內(nèi)

      用符號(hào)語言表示公理1:

      公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

      符號(hào):平面α和β相交,交線是a,記作α∩β=a。

      符號(hào)語言:

      公理2的作用:

      ①它是判定兩個(gè)平面相交的方法

      ②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線公共點(diǎn)。

      ③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

      公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

      推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

      公理3及其推論作用:

      ①它是空間內(nèi)確定平面的依據(jù)

      ②它是證明平面重合的依據(jù)

      公理4:平行于同一條直線的兩條直線互相平行

      空間直線與直線之間的位置關(guān)系

      ①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

      ②異面直線性質(zhì):既不平行,又不相交。

      ③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線

      ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

      求異面直線所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

      B、證明作出的角即為所求角

      C、利用三角形來求角

      (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

      (8)空間直線與平面之間的位置關(guān)系

      直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn).

      三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa‖α

      (9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β

      相交——有一條公共直線。α∩β=b

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      直線的傾斜角:

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

      直線的斜率:

      ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

      ②過兩點(diǎn)的直線的斜率公式。

      注意:

      (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關(guān);

      (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

      (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

      直線方程:

      1.點(diǎn)斜式:y-y0=k(x-x0)

      (x0,y0)是直線所通過的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。

      2.斜截式:y=kx+b

      直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡(jiǎn)稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。

      3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

      如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。

      如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。

      如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

      4.截距式x/a+y/b=1

      對(duì)x的截距就是y=0時(shí),x的值,對(duì)y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

      5.一般式;Ax+By+C=0

      將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。

      高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合相關(guān)文章

      高二數(shù)學(xué)學(xué)考必考知識(shí)點(diǎn)概括

      高二數(shù)學(xué)必考知識(shí)點(diǎn)

      高二數(shù)學(xué)知識(shí)點(diǎn)歸納小結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)筆記

      高二數(shù)學(xué)各類考試的知識(shí)點(diǎn)總結(jié)

      高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

      高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)梳理

      高二數(shù)學(xué)考試必考知識(shí)點(diǎn)

      高二數(shù)學(xué)試卷分析

      高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)

      1627771