亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高考輔導(dǎo)資料 > 高中數(shù)學(xué)知識點總結(jié)及公式大全

      高中數(shù)學(xué)知識點總結(jié)及公式大全

      時間: 夢熒0 分享

      關(guān)于高中數(shù)學(xué)知識點總結(jié)及公式大全

      高考數(shù)學(xué)涉及方方面面,涵蓋的知識點也很多,數(shù)學(xué)公式也很多。那么該怎么做好復(fù)習(xí)呢?以下是小編整理的一些高中數(shù)學(xué)知識點總結(jié)及公式大全,歡迎閱讀參考。

      高中數(shù)學(xué)知識點總結(jié)及公式大全

      高考必備的數(shù)學(xué)公式

      乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

      三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba

      |a-b||a|-|b| -|a|a|a|

      一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

      根與系數(shù)的關(guān)系 X1+X2=-b/a X1__X2=c/a 注:韋達(dá)定理

      判別式

      2-4ac=0 注:方程有兩個相等的實根

      2-4ac0 注:方程有兩個不等的實根

      2-4ac0 注:方程沒有實根,有共軛復(fù)數(shù)根

      三角函數(shù)公式

      兩角和公式

      in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      倍角公式

      tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

      cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

      半角公式

      in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

      cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

      tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

      ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

      和差化積

      2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

      inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

      某些數(shù)列前n項和

      1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

      2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

      13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3

      正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

      余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

      小編推薦:高考數(shù)學(xué)公式大全 理科必備

      圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

      拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

      直棱柱側(cè)面積 S=c__h 斜棱柱側(cè)面積 S=c__h

      正棱錐側(cè)面積 S=1/2c__h 正棱臺側(cè)面積 S=1/2(c+c)h

      圓臺側(cè)面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi__r2

      圓柱側(cè)面積 S=c__h=2pi__h 圓錐側(cè)面積 S=1/2__c__l=pi__r__l

      弧長公式 l=a__r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2__l__r

      錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h

      斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側(cè)棱長

      柱體體積公式 V=s__h 圓柱體 V=pi__r2h

      通項公式的求法:

      (1)構(gòu)造等比數(shù)列:凡是出現(xiàn)關(guān)于后項和前項的一次遞推式都可以構(gòu)造等比數(shù)列求通項公式;

      (2)構(gòu)造等差數(shù)列:遞推式不能構(gòu)造等比數(shù)列時,構(gòu)造等差數(shù)列;

      (3)遞推:即按照后項和前項的對應(yīng)規(guī)律,再往前項推寫對應(yīng)式。

      已知遞推公式求通項常見方法:

      ①已知a1=a,an+1=qan+b,求an時,利用待定系數(shù)法求解,其關(guān)鍵是確定待定系數(shù),使an+1 +=q(an+)進(jìn)而得到。

      ②已知a1=a,an=an-1+f(n)(n2),求an時,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。

      ③已知a1=a,an=f(n)an-1(n2),求an時,利用累乘法求解。

      高三數(shù)學(xué)知識點歸納總結(jié)

      1.等差數(shù)列的定義

      如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

      2.等差數(shù)列的通項公式

      若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

      3.等差中項

      如果A=(a+b)/2,那么A叫做a與b的等差中項.

      4.等差數(shù)列的常用性質(zhì)

      (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

      (2)若{an}為等差數(shù)列,且m+n=p+q,

      則am+an=ap+aq(m,n,p,q∈N_).

      (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

      (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

      (5)S2n-1=(2n-1)an.

      (6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項).

      注意:

      一個推導(dǎo)

      利用倒序相加法推導(dǎo)等差數(shù)列的前n項和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個技巧

      已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

      (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

      (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進(jìn)行對稱設(shè)元.

      四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

      (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項公式法:驗證an=pn+q;

      (4)前n項和公式法:驗證Sn=An2+Bn.

      注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

      高三數(shù)學(xué)知識點整理

      1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

      2.判定兩個平面平行的方法:

      (1)根據(jù)定義--證明兩平面沒有公共點;

      (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

      (3)證明兩平面同垂直于一條直線。

      3.兩個平面平行的主要性質(zhì):

      (1)由定義知:“兩平行平面沒有公共點”;

      (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;

      (3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

      (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

      (5)夾在兩個平行平面間的平行線段相等;

      (6)經(jīng)過平面外一點只有一個平面和已知平面平行。

      1879207