亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高考輔導(dǎo)資料 > 高考數(shù)學(xué)知識(shí)點(diǎn)和公式總結(jié)大全

      高考數(shù)學(xué)知識(shí)點(diǎn)和公式總結(jié)大全

      時(shí)間: 夢(mèng)熒0 分享

      2023高考數(shù)學(xué)知識(shí)點(diǎn)和公式總結(jié)大全

      關(guān)于高考數(shù)學(xué)包括多個(gè)??贾R(shí)點(diǎn),比如函數(shù)、數(shù)列、不等式、三角函數(shù)、立體幾何等重點(diǎn)內(nèi)容,以下是小編準(zhǔn)備的高考數(shù)學(xué)知識(shí)點(diǎn)和公式總結(jié)大全,歡迎借鑒參考。

      高考數(shù)學(xué)知識(shí)點(diǎn)和公式總結(jié)大全

      高考數(shù)學(xué)公式總結(jié)必背

      常用的誘導(dǎo)公式

      公式一:

      設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

      sin(2kπ+α)=sinα (k∈Z)

      cos(2kπ+α)=cosα (k∈Z)

      tan(2kπ+α)=tanα (k∈Z)

      cot(2kπ+α)=cotα (k∈Z)

      公式二:

      設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

      sin(π+α)=-sinα

      cos(π+α)=-cosα

      tan(π+α)=tanα

      cot(π+α)=cotα

      公式三:

      任意角α與 -α的三角函數(shù)值之間的關(guān)系:

      sin(-α)=-sinα

      cos(-α)=cosα

      tan(-α)=-tanα

      cot(-α)=-cotα

      公式四:

      利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(π-α)=sinα

      cos(π-α)=-cosα

      tan(π-α)=-tanα

      cot(π-α)=-cotα

      公式五:

      利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(2π-α)=-sinα

      cos(2π-α)=cosα

      tan(2π-α)=-tanα

      cot(2π-α)=-cotα

      公式六:

      π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

      sin(π/2+α)=cosα

      cos(π/2+α)=-sinα

      tan(π/2+α)=-cotα

      cot(π/2+α)=-tanα

      sin(π/2-α)=cosα

      cos(π/2-α)=sinα

      tan(π/2-α)=cotα

      cot(π/2-α)=tanα

      sin(3π/2+α)=-cosα

      cos(3π/2+α)=sinα

      tan(3π/2+α)=-cotα

      cot(3π/2+α)=-tanα

      sin(3π/2-α)=-cosα

      cos(3π/2-α)=-sinα

      tan(3π/2-α)=cotα

      cot(3π/2-α)=tanα

      (以上k∈Z)

      注意:在做題時(shí),將a看成銳角來做會(huì)比較好做。

      同角三角函數(shù)基本關(guān)系

      倒數(shù)關(guān)系:

      tanα ·cotα=1

      sinα ·cscα=1

      cosα ·secα=1

      商的關(guān)系:

      sinα/cosα=tanα=secα/cscα

      cosα/sinα=cotα=cscα/secα

      平方關(guān)系:

      sin^2(α)+cos^2(α)=1

      1+tan^2(α)=sec^2(α)

      1+cot^2(α)=csc^2(α)

      高中數(shù)學(xué)知識(shí)點(diǎn)歸納

      空間兩條直線只有三種位置關(guān)系:平行、相交、異面。

      按是否共面可分為兩類:

      (1)共面:平行、相交

      (2)異面:

      異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

      異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。

      兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。

      兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。

      若從有無公共點(diǎn)的角度看可分為兩類:

      (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面。

      直線和平面的位置關(guān)系:

      直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。

      ①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

      ②直線和平面相交——有且只有一個(gè)公共點(diǎn)

      直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

      空間向量法(找平面的法向量)

      規(guī)定:a、直線與平面垂直時(shí),所成的角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。

      由此得直線和平面所成角的取值范圍為[0°,90°]。

      最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。

      三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直。

      直線和平面垂直

      直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

      直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

      直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。直線和平面平行——沒有公共點(diǎn)

      直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

      直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

      直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

      數(shù)學(xué)高考知識(shí)點(diǎn)精選總結(jié)

      立體幾何初步

      (1)棱柱:

      定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱

      幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

      分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點(diǎn)字母,如五棱錐

      幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

      (3)棱臺(tái):

      定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

      分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

      表示:用各頂點(diǎn)字母,如五棱臺(tái)

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

      (4)圓柱:

      定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

      (5)圓錐:

      定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

      幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

      (6)圓臺(tái):

      定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

      幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

      (7)球體:

      定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

      1983372