亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高考輔導(dǎo)資料>

      數(shù)學(xué)三大危機簡介

      時間: 淑娟0 分享

      數(shù)學(xué)三大危機,涉及無理數(shù)、微積分和集合等數(shù)學(xué)概念?!〗裉煨【幵谶@給大家整理了數(shù)學(xué)三大危機資料,接下來隨著小編一起來看看吧!

      數(shù)學(xué)三大危機

      第一次數(shù)學(xué)危機

      畢達哥拉斯是公元前五世紀古希臘的著名數(shù)學(xué)家與哲學(xué)家。他曾創(chuàng)立了一個合政治、學(xué)

      術(shù)、宗教三位一體的神秘主義派別:畢達哥拉斯學(xué)派。由畢達哥拉斯提出的著名命題“萬物皆數(shù)”是該學(xué)派的哲學(xué)基石。畢達哥拉斯學(xué)派所說的數(shù)僅指整數(shù)。而“一切數(shù)均可表示成整數(shù)或整數(shù)之比”則是這一學(xué)派的數(shù)學(xué)信仰。然而,具有戲劇性的是由畢達哥拉斯建立的畢達哥拉斯定理卻成了畢達哥拉斯學(xué)派數(shù)學(xué)信仰的“掘墓人”。

      畢達哥拉斯定理提出后,其學(xué)派中的一個成員希帕索斯考慮了一個問題:邊長為1的正方形其對角線長度是多少呢?他發(fā)現(xiàn)這一長度既不能用整數(shù),也不能用分數(shù)表示,而只能用一個新數(shù)來表示。希帕索斯的發(fā)現(xiàn)導(dǎo)致了數(shù)學(xué)史上第一個無理數(shù)根號2的誕生。小小根號2的出現(xiàn),卻在當時的數(shù)學(xué)界掀起了一場巨大風暴。它直接動搖了畢達哥拉斯學(xué)派的數(shù)學(xué)信仰,使畢達哥拉斯學(xué)派為之大為恐慌。實際上,這一偉大發(fā)現(xiàn)不但是對畢達哥拉斯學(xué)派的致命打擊,對于當時所有古希臘人的觀念這都是一個極大的沖擊。這一結(jié)論的悖論性表現(xiàn)在它與常識的沖突上:任何量,在任何精確度的范圍內(nèi)都可以表示成有理數(shù)。這不但在希臘當時是人們普遍接受的信仰,就是在今天,測量技術(shù)已經(jīng)高度發(fā)展時,這個斷言也毫無例外是正確的!可是為我們的經(jīng)驗所確信的,完全符合常識的論斷居然被小小的根號2的存在而推翻了!這應(yīng)該是多么違反常識,多么荒謬的事!它簡直把以前所知道的事情根本推翻了。更糟糕的是,面對這一荒謬人們竟然毫無辦法。這就在當時直接導(dǎo)致了人們認識上的危機,從而導(dǎo)致了西方數(shù)學(xué)史上一場大的風波,史稱“第一次數(shù)學(xué)危機”。

      第二次數(shù)學(xué)危機

      出現(xiàn)

      第二次數(shù)學(xué)危機導(dǎo)源于微積分工具的使用。伴隨著人們科學(xué)理論與實踐認識的提高,十七世紀幾乎在同一時期,微積分這一銳利無比的數(shù)學(xué)工具為牛頓、萊布尼茲共同發(fā)現(xiàn)。這一工具一問世,就顯示出它的非凡威力。許許多多疑難問題運用這一工具后變得易如反掌。但是不管是牛頓,還是萊布尼茲所創(chuàng)立的微積分理論都是不嚴格的。兩人的理論都建立在無窮小分析之上,但他們對作為基本概念的無窮小量的理解與運用卻是混亂的。因而,從微積分誕生時就遭到了一些人的反對與攻擊。其中攻擊最猛烈的是英國大主教貝克萊。

      解決

      經(jīng)過柯西(微積分收官人)用極限的方法定義了無窮小量,微積分理論得以發(fā)展和完善,從而使數(shù)學(xué)大廈變得更加輝煌美麗!

      第三次數(shù)學(xué)危機

      出現(xiàn)

      十九世紀下半葉,康托爾創(chuàng)立了著名的集合論,在集合論剛產(chǎn)生時,曾遭到許多人的猛烈攻擊。但不久這一開創(chuàng)性成果就為廣大數(shù)學(xué)家所接受了,并且獲得廣泛而高度的贊譽。數(shù)學(xué)家們發(fā)現(xiàn),從自然數(shù)與康托爾集合論出發(fā)可建立起整個數(shù)學(xué)大廈。因而集合論成為現(xiàn)代數(shù)學(xué)的基石?!耙磺袛?shù)學(xué)成果可建立在集合論基礎(chǔ)上”這一發(fā)現(xiàn)使數(shù)學(xué)家們?yōu)橹兆怼?900年,國際數(shù)學(xué)家大會上,法國著名數(shù)學(xué)家龐加萊就曾興高采烈地宣稱:“……借助集合論概念,我們可以建造整個數(shù)學(xué)大廈……今天,我們可以說絕對的嚴格性已經(jīng)達到了……”

      可是,好景不長。1903年,一個震驚數(shù)學(xué)界的消息傳出:集合論是有漏洞的!這就是英國數(shù)學(xué)家羅素提出的著名的羅素悖論。

      羅素構(gòu)造了一個集合S:S由一切不是自身元素的元素所組成。然后羅素問:S是否屬于S呢?根據(jù)排中律,一個元素或者屬于某個集合,或者不屬于某個集合。因此,對于一個給定的集合,問是否屬于它自己是有意義的。但對這個看似合理的問題的回答卻會陷入兩難境地。如果S屬于S,根據(jù)S的定義,S就不屬于S;反之,如果S不屬于S,同樣根據(jù)定義,S就屬于S。無論如何都是矛盾的。

      其實,在羅素之前集合論中就已經(jīng)發(fā)現(xiàn)了悖論。如1897年,布拉利和福爾蒂提出了最大序數(shù)悖論。1899年,康托爾自己發(fā)現(xiàn)了最大基數(shù)悖論。但是,由于這兩個悖論都涉及集合中的許多復(fù)雜理論,所以只是在數(shù)學(xué)界揭起了一點小漣漪,未能引起大的注意。羅素悖論則不同。它非常淺顯易懂,而且所涉及的只是集合論中最基本的東西。所以,羅素悖論一提出就在當時的數(shù)學(xué)界與邏輯學(xué)界內(nèi)引起了極大震動。如G.弗雷格在收到羅素介紹這一悖論的信后傷心地說:“一個科學(xué)家所遇到的最不合心意的事莫過于是在他的工作即將結(jié)束時,其基礎(chǔ)崩潰了。羅素先生的一封信正好把我置于這個境地?!贝鞯陆鹨惨虼送七t了他的《什么是數(shù)的本質(zhì)和作用》一文的再版??梢哉f,這一悖論就像在平靜的數(shù)學(xué)水面上投下了一塊巨石,而它所引起的巨大反響則導(dǎo)致了第三次數(shù)學(xué)危機。

      解決

      排除悖論

      危機產(chǎn)生后,數(shù)學(xué)家紛紛提出自己的解決方案。人們希望能夠通過對康托爾的集合論進行改造,通過對集合定義加以限制來排除悖論,這就需要建立新的原則?!斑@些原則必須足夠狹窄,以保證排除一切矛盾;另一方面又必須充分廣闊,使康托爾集合論中一切有價值的內(nèi)容得以保存下來。”1908年,策梅羅在自己這一原則基礎(chǔ)上提出第一個公理化集合論體系,后來經(jīng)其他數(shù)學(xué)家改進,稱為ZF系統(tǒng)。這一公理化集合系統(tǒng)很大程度上彌補了康托爾樸素集合論的缺陷。除ZF系統(tǒng)外,集合論的公理系統(tǒng)還有多種,如諾伊曼等人提出的NBG系統(tǒng)等。

      公理化集合系統(tǒng)

      成功排除了集合論中出現(xiàn)的悖論,從而比較圓滿地解決了第三次數(shù)學(xué)危機。但在另一方面,羅素悖論對數(shù)學(xué)而言有著更為深刻的影響。它使得數(shù)學(xué)基礎(chǔ)問題第一次以最迫切的需要的姿態(tài)擺到數(shù)學(xué)家面前,導(dǎo)致了數(shù)學(xué)家對數(shù)學(xué)基礎(chǔ)的研究。而這方面的進一步發(fā)展又極其深刻地影響了整個數(shù)學(xué)。如圍繞著數(shù)學(xué)基礎(chǔ)之爭,形成了現(xiàn)代數(shù)學(xué)史上著名的三大數(shù)學(xué)流派,而各派的工作又都促進了數(shù)學(xué)的大發(fā)展等等。

      學(xué)好數(shù)學(xué)的十個方法

      學(xué)好數(shù)學(xué)第一要養(yǎng)成預(yù)習(xí)的習(xí)慣。這是我多年學(xué)習(xí)數(shù)學(xué)的一個好方法,因為提前把老師要講的知識先學(xué)一遍,就知道自己哪里不會,學(xué)的時候就有重點。當然,如果完全自學(xué)就懂更好了。

      第二是書后做練習(xí)題。預(yù)習(xí)完不是目的,有時間可以把例題和課后練習(xí)題做了,檢查預(yù)習(xí)情況,如果都會做說明學(xué)會了,即使不會還能再聽老師講一遍。

      第三個步驟是做老師布置的作業(yè),認真做。做的時候可以把解題過程直接寫在題目旁邊,比如選擇題和填空題,因為解答題有很多空白處可寫。這樣做的好處就是,老師講題時能跟上思路,不容易走神。

      第四個學(xué)好數(shù)學(xué)的方法是整理錯題。每次考試結(jié)束后,總會有很多錯題,對于這些題目,我們不要以為上課聽懂了就會做了,看花容易繡花難,親手做過了才知道會不會。而且要把錯的題目對照書本去看,重新學(xué)習(xí)知識。

      第五個提高數(shù)學(xué)成績的方法是查缺補漏。在做了大量習(xí)題以后,數(shù)學(xué)成績有所提高,但還是存在一些不會做的題目,我們要善于發(fā)現(xiàn)哪些類型的題目還存在盲區(qū),然后逐一擊破。

      點擊查看:學(xué)好數(shù)學(xué)的方法20條

      下一個方法是提高數(shù)學(xué)分數(shù)段。可能數(shù)學(xué)學(xué)了一段時間,成績老是上不去,這是要總結(jié)差在哪里?基礎(chǔ)題還是拔高題,然后對自己提出高要求,基礎(chǔ)題目爭取不丟分,然后做一些有難度的題目。

      第七個數(shù)學(xué)提分方法是掌握一些數(shù)學(xué)解題思路。數(shù)學(xué)很多題目都是有固定的或者是多種解題思想的,大家要善于發(fā)現(xiàn)和總結(jié),比如歸納法、分類討論法等等。

      第八個學(xué)好數(shù)學(xué)的方法是“鉆”。當遇到難題百思不得其解時,學(xué)霸們的做法通常是思考一兩天,而學(xué)酥的做法則是一掃而過,其中的差別已經(jīng)很明顯了,這也是成績差異的原因所在。

      要想提高數(shù)學(xué)分數(shù),最明智的做法是,考試遇到不會的題目先放過去,做完其他題目再回過頭來重新做難題。但不能連著放過去好幾道題目,那就有問題了。

      最后一個提分方法就是合理安排答題時間,規(guī)定做選擇題和大題各多長時間,然后按照既定時間去做,這樣才能最有效的提高數(shù)學(xué)分數(shù)。

      數(shù)學(xué)三大危機簡介相關(guān)文章

      數(shù)學(xué)三大危機簡介

      數(shù)學(xué)三大危機,涉及無理數(shù)、微積分和集合等數(shù)學(xué)概念。 今天小編在這給大家整理了數(shù)學(xué)三大危機資料,接下來隨著小編一起來看看吧!數(shù)學(xué)三大危機第一次數(shù)學(xué)危機畢達哥拉斯是公元前五世紀古希臘的著名數(shù)學(xué)家與哲學(xué)家。他曾創(chuàng)立了一個合政治、學(xué)術(shù)、宗教三位一體的神秘主義派別:畢達哥拉斯學(xué)派。由畢達哥拉斯提出的著名命題“萬物皆數(shù)”是該學(xué)派的哲學(xué)基石。畢達哥拉斯學(xué)派所說的數(shù)僅指整數(shù)。而“一切數(shù)均可表示成整數(shù)或整數(shù)之比”則是這一學(xué)派的數(shù)學(xué)信仰。然而,具有戲劇性的是由畢達哥拉斯建立的畢達哥拉斯定理卻成了畢達哥拉斯學(xué)派數(shù)學(xué)信
      推薦度:
      點擊下載文檔文檔為doc格式

      精選文章

      • 數(shù)學(xué)黑洞定義及實例
        數(shù)學(xué)黑洞定義及實例

        數(shù)學(xué)黑洞,無論怎樣設(shè)值,在規(guī)定的處理法則下,最終都將得到固定的一個值,就像宇宙中的黑洞可以將任何物質(zhì).今天小編在這給大家整理了數(shù)學(xué)黑洞,接

      • 2020高考數(shù)學(xué)試卷分析(全國2卷)
        2020高考數(shù)學(xué)試卷分析(全國2卷)

        有的同學(xué)在高中的時候,數(shù)學(xué)一直是他們的頭疼的問題,那么高中數(shù)學(xué)試卷怎么去分析呢?今天小編在這給大家整理了2020高考數(shù)學(xué)試卷分析,接下來隨著小

      • 2021新高考全國1卷數(shù)學(xué)真題及答案
        2021新高考全國1卷數(shù)學(xué)真題及答案

        2021年高考數(shù)學(xué)于6月7日下午考試結(jié)束,不管是考生還是社會人士都對高考數(shù)學(xué)試題以及答案充滿了好奇心,今天小編在這給大家整理了2021新高考全國1卷數(shù)

      • 2020高考數(shù)學(xué)試卷分析(全國1卷)
        2020高考數(shù)學(xué)試卷分析(全國1卷)

        2020高考數(shù)學(xué)試卷重視數(shù)學(xué)本質(zhì),突出理性思維、數(shù)學(xué)應(yīng)用、數(shù)學(xué)探究、數(shù)學(xué)文化的引領(lǐng)作用,突出對關(guān)鍵能力的考查。今天小編在這給大家整理了2020高考

      491650