亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納

      時(shí)間: 楚琪0 分享

      2022高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納

      數(shù)學(xué)是人類對(duì)事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問題,所有的數(shù)學(xué)對(duì)象本質(zhì)上都是人為定義的。對(duì)于數(shù)學(xué)的學(xué)習(xí)你們有什么看法呢?下面是小編給大家?guī)?lái)的高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納,以供大家參考!

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納

      1.數(shù)列的定義、分類與通項(xiàng)公式

      (1)數(shù)列的定義:

      ①數(shù)列:按照一定順序排列的一列數(shù).

      ②數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).

      (2)數(shù)列的分類:

      分類標(biāo)準(zhǔn)類型滿足條件

      項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限

      無(wú)窮數(shù)列項(xiàng)數(shù)無(wú)限

      項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N_

      遞減數(shù)列an+1

      常數(shù)列an+1=an

      (3)數(shù)列的通項(xiàng)公式:

      如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.

      2.數(shù)列的遞推公式

      如果已知數(shù)列{an}的首項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與它的前一項(xiàng)an-1(n≥2)(或前幾項(xiàng))間的關(guān)系可用一個(gè)公式來(lái)表示,那么這個(gè)公式叫數(shù)列的遞推公式.

      3.對(duì)數(shù)列概念的理解

      (1)數(shù)列是按一定“順序”排列的一列數(shù),一個(gè)數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無(wú)序性.因此,若組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個(gè)數(shù)列.

      (2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.

      4.數(shù)列的函數(shù)特征

      數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N_(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項(xiàng)公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_).

      高三最新數(shù)學(xué)知識(shí)點(diǎn)

      三角函數(shù)

      注意歸一公式、誘導(dǎo)公式的正確性

      數(shù)列題

      1.證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

      2.最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

      3.證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

      立體幾何題

      1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

      2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;

      3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

      概率問題

      1.搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

      2.搞清是什么概率模型,套用哪個(gè)公式;

      3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

      4.求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);5.注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;6.注意放回抽樣,不放回抽樣;

      高三數(shù)學(xué)知識(shí)點(diǎn)大全

      1.等差數(shù)列的定義

      如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

      2.等差數(shù)列的通項(xiàng)公式

      若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

      3.等差中項(xiàng)

      如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

      4.等差數(shù)列的常用性質(zhì)

      (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

      (2)若{an}為等差數(shù)列,且m+n=p+q,

      則am+an=ap+aq(m,n,p,q∈N_).

      (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

      (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

      (5)S2n-1=(2n-1)an.

      (6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

      注意:

      一個(gè)推導(dǎo)

      利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個(gè)技巧

      已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

      (1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

      (2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元.

      四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

      (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

      (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

      注:后兩種方法只能用來(lái)判斷是否為等差數(shù)列,而不能用來(lái)證明等差數(shù)列.

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與歸納相關(guān)文章:

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      高三數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)總結(jié)大全

      高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

      高三數(shù)學(xué)各章節(jié)的知識(shí)點(diǎn)歸納

      高考數(shù)學(xué)知識(shí)點(diǎn)歸納整理

      高三數(shù)學(xué)重點(diǎn)知識(shí)總結(jié)大全

      高三數(shù)學(xué)知識(shí)點(diǎn)歸納

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

      高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法

      高三數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)

      1320967