亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高中數(shù)學(xué)知識點重點總結(jié)大全

      高中數(shù)學(xué)知識點重點總結(jié)大全

      時間: 楚琪0 分享

      高中數(shù)學(xué)知識點重點總結(jié)大全2022

      總結(jié)是指社會團體、企業(yè)單位和個人對某一階段的學(xué)習(xí)、它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),因此十分有必須要寫一份總結(jié)哦。下面是小編給大家?guī)淼母咧袛?shù)學(xué)知識點重點總結(jié)大全,以供大家參考!

      高中數(shù)學(xué)知識點重點總結(jié)大全

      集合的有關(guān)概念

      1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

      注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

      ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

      ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

      2)集合的表示方法:常用的有列舉法、描述法和圖文法

      3)集合的分類:有限集,無限集,空集。

      4)常用數(shù)集:N,Z,Q,R,N

      子集、交集、并集、補集、空集、全集等概念

      1)子集:若對_∈A都有_∈B,則AB(或AB);

      2)真子集:AB且存在_0∈B但_0A;記為AB(或,且)

      3)交集:A∩B={_|_∈A且_∈B}

      4)并集:A∪B={_|_∈A或_∈B}

      5)補集:CUA={_|_A但_∈U}

      注意:A,若A≠?,則?A;

      若且,則A=B(等集)

      集合與元素

      掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

      子集的幾個等價關(guān)系

      ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

      ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

      交、并集運算的性質(zhì)

      ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

      ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

      有限子集的個數(shù):

      設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

      練習(xí)題:

      已知集合M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},則M,N,P滿足關(guān)系()

      A)M=NPB)MN=PC)MNPD)NPM

      分析一:從判斷元素的共性與區(qū)別入手。

      解答一:對于集合M:{_|_=,m∈Z};對于集合N:{_|_=,n∈Z}

      對于集合P:{_|_=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

      人教版高一數(shù)學(xué)知識點整理

      考點一、映射的概念

      1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多

      2.映射:設(shè)A和B是兩個非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個元素_,在集合B中都存在的一個元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng)。包括:一對一多對一

      考點二、函數(shù)的概念

      1.函數(shù):設(shè)A和B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個數(shù)_,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個函數(shù)。記作y=f(_),_A.其中_叫自變量,_的取值范圍A叫函數(shù)的定義域;與_的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。

      2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系。這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù)。

      3.區(qū)間的概念:設(shè)a,bR,且a

      ①(a,b)={_a

      ⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__

      考點三、函數(shù)的表示方法

      1.函數(shù)的三種表示方法列表法圖象法解析法

      2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點:①分段函數(shù)是一個函數(shù),不要誤認為是幾個函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

      考點四、求定義域的幾種情況

      ①若f(_)是整式,則函數(shù)的定義域是實數(shù)集R;

      ②若f(_)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;

      ③若f(_)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;

      ④若f(_)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。

      ⑤.因為零的零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零。

      ⑥若f(_)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;

      ⑦若f(_)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實際問題

      高一數(shù)學(xué)知識點歸納大全

      圓的方程定義:

      圓的標準方程(_—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

      直線和圓的位置關(guān)系:

      1、直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

      ①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

      方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

      ①dR,直線和圓相離、

      2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

      3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

      切線的性質(zhì)

      ⑴圓心到切線的距離等于圓的半徑;

      ⑵過切點的半徑垂直于切線;

      ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

      ⑷經(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

      當一條直線滿足

      (1)過圓心;

      (2)過切點;

      (3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

      切線的判定定理

      經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

      切線長定理

      從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

      高中數(shù)學(xué)知識點重點總結(jié)大全相關(guān)文章:

      高中數(shù)學(xué)知識點總結(jié)及公式大全

      高中數(shù)學(xué)知識點全總結(jié)最全版

      高中數(shù)學(xué)知識點全總結(jié)

      高中數(shù)學(xué)知識點大全

      高一數(shù)學(xué)知識點匯總大全

      高中數(shù)學(xué)知識要點總結(jié)范文

      高中數(shù)學(xué)知識點總結(jié)歸納最新

      高中數(shù)學(xué)知識點總結(jié)

      高一數(shù)學(xué)知識點總結(jié)歸納

      高一數(shù)學(xué)知識點全面總結(jié)

      1350704