高中幾何怎么學好
立體幾何一直是高中數(shù)學的一大難點,在已經(jīng)掌握了平面幾何的基礎(chǔ)知識后,要進一步學好立體幾何的基礎(chǔ)知識卻并不容易,高中幾何怎么學好呢?下面學習啦小編收集了一些關(guān)于高中幾何的學習方法,希望對你有幫助
高中幾何的學習方法(逐漸提高邏輯論證能力)
立體幾何的證明是數(shù)學學科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時,思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
高中幾何的學習方法(立足課本,夯實基礎(chǔ))
學習立體幾何的一個捷徑就是認真學習課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學的時候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
高中幾何的學習方法(培養(yǎng)空間想象力)
為了培養(yǎng)空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
高中幾何的學習方法(“轉(zhuǎn)化”思想的應(yīng)用)
解立體幾何的問題,主要是充分運用“轉(zhuǎn)化”這種數(shù)學思想,要明確在轉(zhuǎn)化過程中什么變了,什么沒變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點面距離,點面距離又可轉(zhuǎn)化為點線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進而轉(zhuǎn)化為線線垂直。
高中幾何的學習方法(建立數(shù)學模型)
新課程標準中多次提到“數(shù)學模型”一詞,目的是進一步加強數(shù)學與現(xiàn)實世界的聯(lián)系。數(shù)學模型是把實際問題用數(shù)學語言抽象概括,再從數(shù)學角度來反映或近似地反映實際問題時,所得出的關(guān)于實際問題的描述。數(shù)學模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實際問題越復(fù)雜,相應(yīng)的數(shù)學模型也越復(fù)雜。
從形狀的角度反映現(xiàn)實世界的物體時,經(jīng)過抽象得到的空間幾何體就是現(xiàn)實世界物體的幾何模型。由于立體幾何學習的知識內(nèi)容與學生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實世界中的許多物體。他們直觀、具體、對培養(yǎng)大家的幾何直觀能力有很大的幫助??臻g幾何體,特別是長方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學習時,一方面要注意從實際出發(fā),把學習的知識與周圍的實物聯(lián)系起來,另一方面,也要注意經(jīng)歷從現(xiàn)實的生活抽象空間圖形的過程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。