初中數(shù)學(xué)幾何怎么學(xué)習(xí)
在初中數(shù)學(xué)的學(xué)習(xí)中,幾何一直是大多數(shù)學(xué)生的難題,那么學(xué)習(xí)幾何到底有沒有捷徑呢?下面學(xué)習(xí)啦小編為你整理了初中數(shù)學(xué)幾何學(xué)習(xí)方法,希望對(duì)你有幫助。
初中數(shù)學(xué)幾何學(xué)習(xí)方法
(一)對(duì)基礎(chǔ)知識(shí)的掌握一定要牢固,在這個(gè)基礎(chǔ)上我們才能談如何學(xué)好的問題。例如我們?cè)谧C明相似的時(shí)候,如果利用兩邊對(duì)應(yīng)成比例及其夾角相等的方法時(shí),必須注意所找的角是兩邊的夾角,而不能是其它角。在回答圓的對(duì)稱軸時(shí)不能說是它的直徑,而必須說是直徑所在的直線。像這樣的細(xì)節(jié)我們必須在平時(shí)就要引起足夠的重視并且牢固掌握,只有這樣才是學(xué)好幾何的基礎(chǔ)。
(二)善于歸納總結(jié),熟悉常見的特征圖形。舉個(gè)例子,已知A,B,C三點(diǎn)共線,分別以AB,BC為邊向外作等邊△ABD和等邊△BCE,如果再?zèng)]有其他附加條件,那么你能從這個(gè)圖形中找到哪些結(jié)論?
我們通過很多習(xí)題能夠總結(jié)出:一般情況下題目中如果有兩個(gè)有公共頂點(diǎn)的等邊三角形就必然會(huì)出現(xiàn)一對(duì)旋轉(zhuǎn)式的全等三角形的結(jié)論,這樣我們很容易得出△ABE≌△DBC,在這對(duì)全等三角形的基礎(chǔ)上我們還會(huì)得出△EMB≌△CNB,△MBN是等邊三角形,MN∥AC等主要結(jié)論,這些結(jié)論也會(huì)成為解決其它問題的橋梁。在幾何的學(xué)習(xí)中這樣典型的圖形很多,要善于總結(jié)。
(三)熟悉解題的常見著眼點(diǎn),常用輔助線作法,把大問題細(xì)化成各個(gè)小問題,從而各個(gè)擊破,解決問題。在我們對(duì)一個(gè)問題還沒有切實(shí)的解決方法時(shí),要善于捕捉可能會(huì)幫助你解決問題的著眼點(diǎn)。
(四)考慮問題全面也是學(xué)好幾何至關(guān)重要的一點(diǎn)。在幾何的學(xué)習(xí)中,經(jīng)常會(huì)遇到分兩種或多種情況來解的問題,那么我們?cè)趺茨芨玫慕鉀Q這部分問題呢?這要靠平時(shí)的點(diǎn)滴積累,對(duì)比較常見的分情況考慮的問題要熟悉。例如說到等腰三角形的角要考慮是頂角還是底角,說到等腰三角形的邊要考慮是底還是腰,說到過一點(diǎn)作直線和圓相交,要考慮點(diǎn)和圓有三種位置關(guān)系,所以要畫出三種圖形。這樣的情況在幾何的學(xué)習(xí)中是非常常見的,在這里不一一列舉,但大家在做題時(shí)一定要注意考慮到是否要分情況考慮。很多時(shí)候是你平常注意積累了,你心里有了這個(gè)問題,你做題時(shí)才會(huì)自然而然的想到。
初中數(shù)學(xué)幾何答題技巧和思維方式
一要審題。很多學(xué)生在把一個(gè)題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問號(hào),再對(duì)應(yīng)圖形來對(duì)號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。
二要記。這里的記有兩層意思。第一層意思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來。如給出對(duì)邊相等,就用邊相等的符號(hào)來表示。第二層意思是要牢記,題目給出的條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來。
三要引申。難度大一點(diǎn)的題目往往把一些條件隱藏起來,所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論,然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長(zhǎng)期的積累,便于以后難題的學(xué)習(xí)。
四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結(jié)論出發(fā)往回推理。看看結(jié)論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對(duì)頂角相等2.平行線里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線定義5.等腰三角形6.全等三角形的對(duì)應(yīng)角等等方法。)結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫出證明過程。
五要?dú)w納總結(jié)。很多同學(xué)把一個(gè)題做出來,長(zhǎng)長(zhǎng)的松了一口氣,接下來去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過頭來找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這個(gè)題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。
以上是常見證明題的解題思路,當(dāng)然有一些的題設(shè)計(jì)的很巧妙,往往需要我們?cè)谔罴虞o助線,分析已知、求證與圖形,探索證明的思路。對(duì)于證明題,有三種思考方式:
(1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對(duì)于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。
(3)正逆結(jié)合。對(duì)于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長(zhǎng)法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對(duì)角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無不勝。
猜你感興趣: