初中數(shù)學(xué)解題方法有哪些
初中數(shù)學(xué)解題方法有哪些
很多同學(xué)哎面對(duì)數(shù)學(xué)考試的時(shí)候往往不會(huì)解題二導(dǎo)致沒(méi)十分嚴(yán)重,應(yīng)該怎么解決這個(gè)問(wèn)題呢?下面是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)解題的技巧的資料,希望大家喜歡!
初中數(shù)學(xué)解題的技巧一
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過(guò)驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過(guò)對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
初中數(shù)學(xué)解題的技巧二
如何提高解題的正確率
很多同學(xué)考試發(fā)下卷子后,總是難免要一聲嘆息或者幾聲嘆息。“這個(gè)問(wèn)題我怎么沒(méi)想到?!”,“這么簡(jiǎn)單的計(jì)算我怎么居然算錯(cuò)了?!”,“我怎么草稿紙上算對(duì)了,卷子上卻寫錯(cuò)了?!”……
很多同學(xué)都把正確率的欠缺歸結(jié)為考試時(shí)自己的不小心、粗心,并且還在心里有意無(wú)意地把因?yàn)檫@種原因被扣掉的分加上去,心里想著我的水平應(yīng)該是多少多少分。如果你常常這樣做,那就大錯(cuò)特錯(cuò)了。因?yàn)?,你?huì)發(fā)現(xiàn),等到下次考試,你努力地想要細(xì)心仔細(xì)地做每一道題時(shí),發(fā)下卷子,還是會(huì)出現(xiàn)本該會(huì)做的題做錯(cuò)了的情況。如果是這樣,那就表示,你還存在一個(gè)學(xué)習(xí)上的缺點(diǎn)或弱點(diǎn):正確率沒(méi)有保證!這不是僅僅靠考試時(shí)的極力小心所能解決的。
下面我們就對(duì)解題錯(cuò)誤率高的幾種情況進(jìn)行分析。
現(xiàn)象一:一聽就會(huì),一做就錯(cuò),總是在看到答案后恍然大悟。
很多學(xué)生在看到題目時(shí)覺(jué)得面熟,能肯定自己以前做過(guò)原題或類似的題目,但就是想不起來(lái)該怎么做,越是回憶以前做過(guò)的類似題目越是沒(méi)有思路,等看到答案才大喊一聲,哇,原來(lái)是這樣的啊。于是再做,發(fā)現(xiàn)還是不能獨(dú)立的把題目完整的做出來(lái),于是再看答案,再做。。。。。。
原因:原來(lái)在做題目時(shí)沒(méi)有真正理解題目的解法,只能跟著老師的思路把題目抄下來(lái),沒(méi)有自己動(dòng)手整理,導(dǎo)致自己覺(jué)得會(huì)做了,其實(shí)只是在當(dāng)時(shí)把題目背過(guò)了,一段時(shí)間以后就只記得題目不記得解法了。所以,“背題”是萬(wàn)萬(wàn)要不得的,考試的題目千千萬(wàn),背的過(guò)來(lái)么?
解決方法:在做完一道題目后,兩個(gè)同學(xué)結(jié)成小組,互相講解給對(duì)方聽,讓同學(xué)幫你檢查你對(duì)這個(gè)題目的理解還有什么欠缺,發(fā)現(xiàn)問(wèn)題立即問(wèn)老師,力爭(zhēng)當(dāng)堂把題目理解透徹。家長(zhǎng)可以在一兩周之后把這道題目的數(shù)據(jù)換一下,再讓孩子做一遍,這樣就能做到讓孩子徹底的掌握這種類型題目的解法,還能達(dá)到舉一反三的效果。
現(xiàn)象二:會(huì)做,但總是粗心,不是抄錯(cuò)題就是算錯(cuò)數(shù)
很多家長(zhǎng)都反應(yīng)說(shuō)自己的孩子很粗心,經(jīng)常把會(huì)做的題目算錯(cuò),甚至有家長(zhǎng)說(shuō)孩子期末考試考了96分,丟掉的那四分全是粗心算錯(cuò)的,并對(duì)這個(gè)成績(jī)很滿意,還有很多學(xué)生也說(shuō),這道題目我會(huì)做就可以了,這次算錯(cuò)了沒(méi)關(guān)系,到考試時(shí)能算對(duì)就可以了。其實(shí),作為有多年教學(xué)經(jīng)驗(yàn)的老師,我們告訴各位家長(zhǎng),會(huì)做做不對(duì)才是最可怕的。
原因:粗心的原因有兩個(gè),一是心態(tài)問(wèn)題,這個(gè)問(wèn)題后面會(huì)詳細(xì)的說(shuō)。第二個(gè)原因就是對(duì)知識(shí)掌握的不牢固,模棱兩可,錯(cuò)誤總是在你掌握不牢固的地方出現(xiàn),那些看似是粗心犯的錯(cuò),其實(shí)都是因?yàn)樵趹?yīng)用知識(shí)的時(shí)候不熟練,導(dǎo)致出錯(cuò)。
解決方法:有選擇的多做題目,在數(shù)學(xué)學(xué)習(xí)中,我們反對(duì)搞題海戰(zhàn)術(shù),但是要想學(xué)好數(shù)學(xué),不做題目不進(jìn)行針對(duì)性訓(xùn)練是無(wú)法把學(xué)到的知識(shí)掌握牢固的。但是也不能盲目的去做題,有數(shù)量不等于有質(zhì)量,會(huì)做的題目就是做上一千道也沒(méi)有進(jìn)步。老師和家長(zhǎng)要引導(dǎo)孩子挑戰(zhàn)自己不會(huì)的題目,只有不斷地去挑戰(zhàn)才能不斷的進(jìn)步。
現(xiàn)象三:心態(tài)不端正,覺(jué)得做不對(duì)無(wú)所謂,會(huì)做就行了
很多學(xué)生都覺(jué)得只要會(huì)做就行了,平時(shí)算不對(duì),到考試時(shí)注意力會(huì)高度集中,就能算對(duì)了。其實(shí)這種看法是不對(duì)的,
原因:學(xué)生學(xué)習(xí)的目的除了要掌握知識(shí),掌握解決問(wèn)題的方法,還要在學(xué)習(xí)的過(guò)程中養(yǎng)成良好的學(xué)習(xí)習(xí)慣,良好的學(xué)習(xí)習(xí)慣是成功的一大法寶。而在學(xué)習(xí)中心態(tài)不端正,長(zhǎng)此以往,會(huì)形成浮躁的性格,這是學(xué)習(xí)的大忌。
解決方法:端正態(tài)度,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。準(zhǔn)備一個(gè)錯(cuò)題本,把每天自己做錯(cuò)的題目記下來(lái),要將因?yàn)椴粫?huì)而做錯(cuò)和因?yàn)榇中淖鲥e(cuò)的題目分開記,每周都將錯(cuò)題本上的該周做錯(cuò)的題目再做一遍,就會(huì)對(duì)自己犯過(guò)的錯(cuò)誤印象深刻,就能避免再犯同樣的錯(cuò)誤。
總之,要想提高解題的準(zhǔn)確率,就要本著端正的學(xué)習(xí)態(tài)度,去做一定量的有針對(duì)性的題目,在做題時(shí)認(rèn)真思考,要全神貫注,心無(wú)旁騖。真正的去理解解題方法,做完一道題目之后當(dāng)堂回顧,把解題思路復(fù)述出來(lái),并將做錯(cuò)的題抄在錯(cuò)題本上,經(jīng)過(guò)一段時(shí)間的努力,一定能將解題的錯(cuò)誤率降低,并養(yǎng)成良好的學(xué)習(xí)習(xí)慣。所以,我們經(jīng)常說(shuō),學(xué)數(shù)學(xué)很容易,秘訣就是:會(huì)做的做對(duì),錯(cuò)過(guò)的不要再錯(cuò)!
初中數(shù)學(xué)解題的技巧三
學(xué)好初中數(shù)學(xué)要注意的三個(gè)方面
1、全面復(fù)習(xí),把書讀薄
全面復(fù)習(xí)不是生記硬背所有的知識(shí),相反,是要抓住問(wèn)題的實(shí)質(zhì)和各內(nèi)容各方法的本質(zhì)聯(lián)系,把要記的東西縮小到最小程度,(要努力使自已理解所學(xué)知識(shí),多抓住問(wèn)題的聯(lián)系,少記一些死知識(shí)),而且,不記則已,記住了就要牢靠,事實(shí)證明,有些記憶是終生不忘的,而其它的知識(shí)又可以在記住基本知識(shí)的基礎(chǔ)上,運(yùn)用它們的聯(lián)系而得到。這就是全面復(fù)習(xí)的含義。
2、突出重點(diǎn),精益求精
在考試大綱的要求中,對(duì)內(nèi)容有理解,了解,知道三個(gè)層次的要求;對(duì)方法有掌,會(huì)(能)兩個(gè)層次的要求,一般地說(shuō),要求理解的內(nèi)容,要求掌握的方法,是考試的重點(diǎn)。在歷年考試中,這方面考題出現(xiàn)的概率較大;在同一份試卷中,這方面試題所占有的分?jǐn)?shù)也較多。"猜題"的人,往往要在這方面下功夫。一般說(shuō)來(lái),也確能猜出幾分來(lái)。但遇到綜合題,這些題在主要內(nèi)容中含有次要內(nèi)容。這時(shí),"猜題"便行不通了。我們講的突出重點(diǎn),不僅要在主要內(nèi)容和方法上多下功夫,更重要的是要去尋找重點(diǎn)內(nèi)容與次要內(nèi)容間的聯(lián)系,以主帶次,用重點(diǎn)內(nèi)容擔(dān)挈整個(gè)內(nèi)容。主要內(nèi)容理解透了,其它的內(nèi)容和方法迎刃而解。即抓出主要內(nèi)容不是放棄次要內(nèi)容而孤立主要內(nèi)容,而是從分析各內(nèi)容的聯(lián)系,從比較中自然地突出主要內(nèi)容。
3、基本訓(xùn)練反復(fù)進(jìn)行
學(xué)習(xí)數(shù)學(xué),要做一定數(shù)量的題,把基本功練熟練透,但我們不主張"題海"戰(zhàn)術(shù),而是提倡精練,即反復(fù)做一些典型的題,做到一題多解,一題多變。要訓(xùn)練抽象思維能力,對(duì)些基本定理的證明,基本公式的推導(dǎo),以及一些基本練習(xí)題,要作到不用書寫,就象棋手下"盲棋"一樣,只需用腦子默想,即能得到正確答案。這就是我們?cè)诔Q灾刑岬降?,?0分鐘內(nèi)完成10道客觀題。其中有些是不用動(dòng)筆,一眼就能作出答案的題,這樣才叫訓(xùn)練有素,"熟能生巧",基本功扎實(shí)的人,遇到難題辦法也多,不易被難倒。相反,作練習(xí)時(shí),眼高手低,總找難題作,結(jié)果,上了考場(chǎng),遇到與自己曾經(jīng)作過(guò)的類似的題目都有可能不會(huì);不少考生把會(huì)作的題算錯(cuò)了,歸為粗心大意,確實(shí),人會(huì)有粗心的,但基本功扎實(shí)的人,出了錯(cuò)立即會(huì)發(fā)現(xiàn),很少會(huì)"粗心"地出錯(cuò)。
三、有疑必問(wèn)“事半功倍”
學(xué)會(huì)學(xué)習(xí),掌握學(xué)習(xí)規(guī)律和學(xué)習(xí)方法,以培養(yǎng)索取知識(shí)的能力,乃是當(dāng)今青少年學(xué)習(xí)中十分重要的任務(wù),只有憑借著良好的學(xué)習(xí)方法,才能達(dá)到“事半功倍”的學(xué)習(xí)效果。
針對(duì)數(shù)學(xué)學(xué)習(xí),有以下幾點(diǎn)建議,供大家參考。
一、閱讀理解目前初中學(xué)生學(xué)習(xí)數(shù)學(xué)存在一個(gè)嚴(yán)重的問(wèn)題就是不善于讀數(shù)學(xué)教材,他們往往是死記硬背。重視閱讀方法對(duì)提高初中學(xué)生的學(xué)習(xí)能力是至關(guān)重要的。新學(xué)一個(gè)章節(jié)內(nèi)容,先粗粗讀一遍,即瀏覽本章節(jié)所學(xué)內(nèi)容的枝干,然后一邊讀一邊勾,粗略懂得教材的內(nèi)容及其重點(diǎn)、難點(diǎn)所在,對(duì)不理解的地方打上記號(hào)。然后細(xì)細(xì)地讀,即根據(jù)每章節(jié)后的學(xué)習(xí)要求,仔細(xì)閱讀教材內(nèi)容,理解數(shù)學(xué)概念、公式、法則、思想方法的實(shí)質(zhì)及其因果關(guān)系,把握重點(diǎn)、突破難點(diǎn)。再次帶著研究者的態(tài)度去讀,即帶著發(fā)展的觀點(diǎn)研討知識(shí)的來(lái)龍去脈、結(jié)構(gòu)關(guān)系、編排意圖,并歸納要點(diǎn),把書讀懂,并形成知識(shí)網(wǎng)絡(luò),完善認(rèn)識(shí)結(jié)構(gòu),當(dāng)學(xué)生掌握了這三種讀法,形成習(xí)慣之后,就能從本質(zhì)上改變其學(xué)習(xí)方式,提高學(xué)習(xí)效率了。
二、提高聽課質(zhì)量要培養(yǎng)會(huì)聽課,聽懂課的習(xí)慣。注意聽教師每節(jié)課強(qiáng)調(diào)的學(xué)習(xí)重點(diǎn),注意聽對(duì)定理、公式、法則的引入與推導(dǎo)的方法和過(guò)程,注意聽對(duì)例題關(guān)鍵部分的提示和處理方法,注意聽對(duì)疑難問(wèn)題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點(diǎn),沿著知識(shí)的發(fā)生發(fā)展的過(guò)程來(lái)聽課,不僅能提高聽課效率,而且能由“聽會(huì)”轉(zhuǎn)變?yōu)?ldquo;會(huì)聽”。
三、有疑必問(wèn)是提高學(xué)習(xí)效率的有效辦法學(xué)習(xí)過(guò)程中,遇到疑問(wèn),抓緊時(shí)間問(wèn)老師和同學(xué),把沒(méi)有弄懂,沒(méi)有學(xué)明白的知識(shí),最短的時(shí)間內(nèi)掌握。建立自己的錯(cuò)題本,經(jīng)常翻閱,提醒自己同樣的錯(cuò)誤不要犯第二次。從而提高學(xué)習(xí)效率。
猜你喜歡:
1.初中數(shù)學(xué)學(xué)習(xí)方法總結(jié)