亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 學(xué)習(xí)方法指導(dǎo) > 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間: 文軒0 分享

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)來了

      保持積極的心態(tài)和充滿自信的心理狀態(tài)對(duì)提高數(shù)學(xué)成績(jī)至關(guān)重要。下面是小編為大家?guī)淼?/span>高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望大家能夠喜歡!快來看看吧!

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

      2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

      3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

      向量公式:

      1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|

      2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方)

      3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]

      4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(hào)(x1平方+y1平方)_根號(hào)(x2平方+y2平方)

      5.空間向量:同上推論(提示:向量a={x,y,z})

      6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

      7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

      復(fù)數(shù)模的性質(zhì):

      復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

      對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

      集合中元素的特性

      (1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對(duì)象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

      (2)互異性:“集合張的元素必須是互異的”,就是說“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

      (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

      集合的分類

      集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:

      有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

      無限集:含有無限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

      特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。

      三角恒等變換

      這一章公式特別多,像差倍半角公式這類內(nèi)容常會(huì)出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點(diǎn),就是三角恒等變換是有一定規(guī)律的,記憶的時(shí)候可以集合三角函數(shù)去記。

      2006857