亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二物理 > 高二的物理公式的詳細介紹

      高二的物理公式的詳細介紹

      時間: 夏萍1132 分享

      高二的物理公式的詳細介紹

        高二是一個比較重要的過程,既要要學習新的知識,還要復習學過的知識,為高三的復習打下基礎,下面是學習啦小編給大家?guī)淼挠嘘P于高二的物理公式詳解,希望能夠幫助到大家。

        高二的物理公式詳解(一)

        一、質點的運動(1)------直線運動

        1)勻變速直線運動

        1.平均速度V平=s/t(定義式)2.有用推論Vt2-Vo2=2as

        3.中間時刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at

        5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t

        7.加速度a=(Vt-Vo)/t{以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}

        8.實驗用推論Δs=aT2{Δs為連續(xù)相鄰相等時間(T)內位移之差}

        9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。

        注:(1)平均速度是矢量;(2)物體速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是決定式;

        (4)其它相關內容:質點.位移和路程.參考系.時間與時刻;速度與速率.瞬時速度。

        2)自由落體運動

        1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(從Vo位置向下計算)4.推論Vt2=2gh

        注:(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規(guī)律;

        (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。

        (3)豎直上拋運動

        1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)

        3.有用推論Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(拋出點算起)

        5.往返時間t=2Vo/g(從拋出落回原位置的時間)

        注:(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;

        (2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;

        (3)上升與下落過程具有對稱性,如在同點速度等值反向等。

        二、質點的運動(2)----曲線運動、萬有引力

        1)平拋運動

        1.水平方向速度:Vx=Vo2.豎直方向速度:Vy=gt

        3.水平方向位移:x=Vot4.豎直方向位移:y=gt2/2

        5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)

        6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

        合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0

        7.合位移:s=(x2+y2)1/2,

        位移方向與水平夾角α:tgα=y/x=gt/2Vo

        8.水平方向加速度:ax=0;豎直方向加速度:ay=g

        注:(1)平拋運動是勻變速曲線運動,加速度為g,通??煽醋魇撬椒较虻膭蛩僦本€運與豎直方向的自由落體運動的合成;

        (2)運動時間由下落高度h(y)決定與水平拋出速度無關;

        (3)θ與β的關系為tgβ=2tgα;

        (4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。

        2)勻速圓周運動

        1.線速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf

        3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

        5.周期與頻率:T=1/f6.角速度與線速度的關系:V=ωr

        7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)

        8.主要物理量及單位:弧長(s):(m);角度(Φ):弧度(rad);頻率(f);赫(Hz);周期(T):秒(s);轉速(n);r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

        注:(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;

        (2)做勻速圓周運動的物體,其向心力等于合力,并且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變.

        3)萬有引力

        1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決于中心天體的質量)}

        2.萬有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它們的連線上)

        3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天體半徑(m),M:天體質量(kg)}

        4.衛(wèi)星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}

        5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

        6.地球同步衛(wèi)星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}

        注:(1)天體運動所需的向心力由萬有引力提供,F向=F萬;

        (2)應用萬有引力定律可估算天體的質量密度等;

        (3)地球同步衛(wèi)星只能運行于赤道上空,運行周期和地球自轉周期相同;

        (4)衛(wèi)星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);

        (5)地球衛(wèi)星的最大環(huán)繞速度和最小發(fā)射速度均為7.9km/s。

        三、力(常見的力、力的合成與分解)

        (1)常見的力

        1.重力G=mg(方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用于地球表面附近)

        2.胡克定律F=kx{方向沿恢復形變方向,k:勁度系數(shù)(N/m),x:形變量(m)}

        3.滑動摩擦力F=μFN{與物體相對運動方向相反,μ:摩擦因數(shù),F(xiàn)N:正壓力(N)}

        4.靜摩擦力0≤f靜≤fm(與物體相對運動趨勢方向相反,fm為最大靜摩擦力)

        5.萬有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它們的連線上)

        6.靜電力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它們的連線上)

        7.電場力F=Eq(E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)

        8.安培力F=BILsinθ(θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)

        9.洛侖茲力f=qVBsinθ(θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)

        注:(1)勁度系數(shù)k由彈簧自身決定;

        (2)摩擦因數(shù)μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;

        (3)fm略大于μFN,一般視為fm≈μFN;

        (4)其它相關內容:靜摩擦力(大小、方向);

        (5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);

        (6)安培力與洛侖茲力方向均用左手定則判定。

        2)力的合成與分解

        1.同一直線上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)

        2.互成角度力的合成:

        F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2時:F=(F12+F22)1/2

        3.合力大小范圍:|F1-F2|≤F≤|F1+F2|

        4.力的正交分解:Fx=Fcosβ,F(xiàn)y=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)

        注:(1)力(矢量)的合成與分解遵循平行四邊形定則;

        (2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;

        (3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;

        (4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;

        (5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數(shù)運算。

        四、動力學(運動和力)

        1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態(tài)或靜止狀態(tài),直到有外力迫使它改變這種狀態(tài)為止

        2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}

        3.牛頓第三運動定律:F=-F′{負號表示方向相反,F、F′各自作用在對方,平衡力與作用力反作用力區(qū)別,實際應用:反沖運動}

        4.共點力的平衡F合=0,推廣{正交分解法、三力匯交原理}

        5.超重:FN>G,失重:FN

        6.牛頓運動定律的適用條件:適用于解決低速運動問題,適用于宏觀物體,不適用于處理高速問題,不適用于微觀粒子

        注:平衡狀態(tài)是指物體處于靜止或勻速直線狀態(tài),或者是勻速轉動。

        五、振動和波(機械振動與機械振動的傳播)

        1.簡諧振動F=-kx{F:回復力,k:比例系數(shù),x:位移,負號表示F的方向與x始終反向}

        2.單擺周期T=2π(l/g)1/2{l:擺長(m),g:當?shù)刂亓铀俣戎?,成立條件:擺角θ<100;l>>r}

        3.受迫振動頻率特點:f=f驅動力

        4.發(fā)生共振條件:f驅動力=f固,A=max,共振的防止和應用

        5.機械波、橫波、縱波

        注:(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;

        (2)溫度是分子平均動能的標志;

        3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;

        (4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;

        (5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大ΔU>0;吸收熱量,Q>0

        (6)物體的內能是指物體所有的分子動能和分子勢能的總和,對于理想氣體分子間作用力為零,分子勢能為零;

        (7)r0為分子處于平衡狀態(tài)時,分子間的距離;

        (8)其它相關內容:能的轉化和定恒定律能源的開發(fā)與利用.環(huán)保物體的內能.分子的動能.分子勢能。

        六、沖量與動量(物體的受力與動量的變化)

        1.動量:p=mv{p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}

        3.沖量:I=Ft{I:沖量(N?s),F(xiàn):恒力(N),t:力的作用時間(s),方向由F決定}

        4.動量定理:I=Δp或Ft=mvt?mvo{Δp:動量變化Δp=mvt?mvo,是矢量式}

        5.動量守恒定律:p前總=p后總或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′

        6.彈性碰撞:Δp=0;ΔEk=0{即系統(tǒng)的動量和動能均守恒}

        7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:損失的動能,EKm:損失的最大動能}

        8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm{碰后連在一起成一整體}

        9.物體m1以v1初速度與靜止的物體m2發(fā)生彈性正碰:

        v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)

        10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恒、動量守恒)

        11.子彈m水平速度vo射入靜止置于水平光滑地面的長木塊M,并嵌入其中一起運動時的機械能損失

        E損=mvo2/2-(M+m)vt2/2=fs相對{vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}

        注:

        (1)正碰又叫對心碰撞,速度方向在它們“中心”的連線上;

        (2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數(shù)運算;

        (3)系統(tǒng)動量守恒的條件:合外力為零或系統(tǒng)不受外力,則系統(tǒng)動量守恒(碰撞問題、爆炸問題、反沖問題等);

        (4)碰撞過程(時間極短,發(fā)生碰撞的物體構成的系統(tǒng))視為動量守恒,原子核衰變時動量守恒;

        (5)爆炸過程視為動量守恒,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發(fā)展和宇宙航行〔見第一冊P128〕。

        七、功和能(功是能量轉化的量度)

        1.功:W=Fscosα(定義式){W:功(J),F(xiàn):恒力(N),s:位移(m),α:F、s間的夾角}

        2.重力做功:Wab=mghab{m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}

        3.電場力做功:Wab=qUab{q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}

        4.電功:W=UIt(普適式){U:電壓(V),I:電流(A),t:通電時間(s)}

        5.功率:P=W/t(定義式){P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}

        6.汽車牽引力的功率:P=Fv;P平=Fv平{P:瞬時功率,P平:平均功率}

        7.汽車以恒定功率啟動、以恒定加速度啟動、汽車最大行駛速度(vmax=P額/f)

        8.電功率:P=UI(普適式){U:電路電壓(V),I:電路電流(A)}

        9.焦耳定律:Q=I2Rt{Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}

        10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

        11.動能:Ek=mv2/2{Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}

        12.重力勢能:EP=mgh{EP:重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}

        13.電勢能:EA=qφA{EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}

        14.動能定理(對物體做正功,物體的動能增加):

        W合=mvt2/2-mvo2/2或W合=ΔEK

        {W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}

        15.機械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

        16.重力做功與重力勢能的變化(重力做功等于物體重力勢能增量的負值)WG=-ΔEP

        注:

        (1)功率大小表示做功快慢,做功多少表示能量轉化多少;

        (2)O0≤α<90O做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);

        (3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少

        (4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恒成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數(shù)和形變量有關。

        八、分子動理論、能量守恒定律

        1.阿伏加德羅常數(shù)NA=6.02×1023/mol;分子直徑數(shù)量級10-10米

        2.油膜法測分子直徑d=V/s{V:單分子油膜的體積(m3),S:油膜表面積(m)2}

        3.分子動理論內容:物質是由大量分子組成的;大量分子做無規(guī)則的熱運動;分子間存在相互作用力。

        4.分子間的引力和斥力(1)r

        (2)r=r0,f引=f斥,F(xiàn)分子力=0,E分子勢能=Emin(最小值)

        (3)r>r0,f引>f斥,F(xiàn)分子力表現(xiàn)為引力

        (4)r>10r0,f引=f斥≈0,F(xiàn)分子力≈0,E分子勢能≈0

        5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),

        W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}

        6.熱力學第二定律

        克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);

        開氏表述:不可能從單一熱源吸收熱量并把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}

        7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}

        注:

        (1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;

        (2)溫度是分子平均動能的標志;

        3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;

        (4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;

        (5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大ΔU>0;吸收熱量,Q>0

        (6)物體的內能是指物體所有的分子動能和分子勢能的總和,對于理想氣體分子間作用力為零,分子勢能為零;

        (7)r0為分子處于平衡狀態(tài)時,分子間的距離;

        (8)其它相關內容:能的轉化和定恒定律〔見第二冊P41〕/能源的開發(fā)與利用、環(huán)?!惨姷诙訮47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。

        九、氣體的性質

        1.氣體的狀態(tài)參量:

        溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規(guī)則運動的劇烈程度的標志,

        熱力學溫度與攝氏溫度關系:T=t+273{T:熱力學溫度(K),t:攝氏溫度(℃)}

        體積V:氣體分子所能占據(jù)的空間,單位換算:1m3=103L=106mL

        壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產(chǎn)生持續(xù)、均勻的壓力,

        標準大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

        2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大

        3.理想氣體的狀態(tài)方程:p1V1/T1=p2V2/T2{PV/T=恒量,T為熱力學溫度(K)}

        注:(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;

        (2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。

        高二的物理公式詳解(二)

        十、電場

        1.兩種電荷、電荷守恒定律、元電荷:(e=1.60×10-19C);帶電體電荷量等于元電荷的整數(shù)倍

        2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),

        r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}

        3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}

        4.真空點(源)電荷形成的電場E=kQ/r2{r:源電荷到該位置的距離(m),Q:源電荷的電量}

        5.勻強電場的場強E=UAB/d{UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}

        6.電場力:F=qE{F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}

        7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

        8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),

        UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}

        9.電勢能:EA=qφA{EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}

        10.電勢能的變化ΔEAB=EB-EA{帶電體在電場中從A位置到B位置時電勢能的差值}

        11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB(電勢能的增量等于電場力做功的負值)

        12.電容C=Q/U(定義式,計算式){C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}

        13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數(shù))

        常見電容器

        14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

        15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)

        類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)

        拋運動平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m

        注:

        (1)兩個完全相同的帶電金屬小球接觸時,電量分配規(guī)律:原帶異種電荷的先中和后平分,原帶同種電荷的總量平分;

        (2)電場線從正電荷出發(fā)終止于負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;

        3)常見電場的電場線分布要求熟記;

        (4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;

        (5)處于靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直于導體表面,導體內部合場強為零,

        導體內部沒有凈電荷,凈電荷只分布于導體外表面;

        (6)電容單位換算:1F=106μF=1012PF;

        (7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;

        (8)其它相關內容:靜電屏蔽/示波管、示波器及其應用等勢面。

        十一、恒定電流

        1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}

        2.歐姆定律:I=U/R{I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}

        3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}

        4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外

        {I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}

        5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}

        6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}

        7.純電阻電路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

        8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總

        {I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}

        9.電路的串/并聯(lián)串聯(lián)電路(P、U與R成正比)并聯(lián)電路(P、I與R成反比)

        電阻關系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

        電流關系I總=I1=I2=I3I并=I1+I2+I3+

        電壓關系U總=U1+U2+U3+U總=U1=U2=U3

        功率分配P總=P1+P2+P3+P總=P1+P2+P3+

        10.歐姆表測電阻

        (1)電路組成(2)測量原理

        兩表筆短接后,調節(jié)Ro使電表指針滿偏,得

        Ig=E/(r+Rg+Ro)

        接入被測電阻Rx后通過電表的電流為

        Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

        由于Ix與Rx對應,因此可指示被測電阻大小

        (3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數(shù){注意擋位(倍率)}、撥off擋。

        (4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。

        11.伏安法測電阻

        電流表內接法:電流表外接法:

        電壓表示數(shù):U=UR+UA電流表示數(shù):I=IR+IV

        Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

        選用電路條件Rx>>RA[或Rx>(RARV)1/2]選用電路條件Rx<

        12.滑動變阻器在電路中的限流接法與分壓接法

        限流接法

        電壓調節(jié)范圍小,電路簡單,功耗小電壓調節(jié)范圍大,電路復雜,功耗較大

        便于調節(jié)電壓的選擇條件Rp>Rx便于調節(jié)電壓的選擇條件Rp

        注1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

        (2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;

        (3)串聯(lián)總電阻大于任何一個分電阻,并聯(lián)總電阻小于任何一個分電阻;

        (4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;

        (5)當外電路電阻等于電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);

        (6)其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。

        十二、磁場

        1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m

        2.安培力F=BIL;(注:L⊥B){B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}

        3.洛侖茲力f=qVB(注V⊥B);質譜儀{f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}

        4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):

        (1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0

        (2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規(guī)律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB

        ;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);

        ?解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。

        注:(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;

        (2)磁感線的特點及其常見磁場的磁感線分布要掌握;

        (3)其它相關內容:地磁場/磁電式電表原理/回旋加速器/磁性材料

        十三、電磁感應

        1.[感應電動勢的大小計算公式]

        1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數(shù),ΔΦ/Δt:磁通量的變化率}

        2)E=BLV垂(切割磁感線運動){L:有效長度(m)}

        3)Em=nBSω(交流發(fā)電機最大的感應電動勢){Em:感應電動勢峰值}

        4)E=BL2ω/2(導體一端固定以ω旋轉切割){ω:角速度(rad/s),V:速度(m/s)}

        2.磁通量Φ=BS{Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}

        3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}

        *4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(shù)(H)(線圈L有鐵芯比無鐵芯時要大),

        ΔI:變化電流,?t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}

        注:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點;

        (2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。

        (4)其它相關內容:自感/日光燈。

        十四、交變電流(正弦式交變電流)

        1.電壓瞬時值e=Emsinωt電流瞬時值i=Imsinωt;(ω=2πf)

        2.電動勢峰值Em=nBSω=2BLv電流峰值(純電阻電路中)Im=Em/R總

        3.正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2

        4.理想變壓器原副線圈中的電壓與電流及功率關系

        U1/U2=n1/n2;I1/I2=n2/n2;P入=P出

        5.在遠距離輸電中,采用高壓輸送電能可以減少電能在輸電線上的損失損′=(P/U)2R;

        (P損′:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻);

        6.公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數(shù);B:磁感強度(T);

        S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。

        注:(1)交變電流的變化頻率與發(fā)電機中線圈的轉動的頻率相同即:ω電=ω線,f電=f線;

        (2)發(fā)電機中,線圈在中性面位置磁通量最大,感應電動勢為零,過中性面電流方向就改變;

        (3)有效值是根據(jù)電流熱效應定義的,沒有特別說明的交流數(shù)值都指有效值;

        (4)理想變壓器的匝數(shù)比一定時,輸出電壓由輸入電壓決定,輸入電流由輸出電流決定,輸入功率等于輸出功率,

        當負載的消耗的功率增大時輸入功率也增大,即P出決定P入;

        (5)其它相關內容:正弦交流電圖象/電阻、電感和電容對交變電流的作用。

        十五、電磁振蕩和電磁波

        1.LC振蕩電路T=2π(LC)1/2;f=1/T{f:頻率(Hz),T:周期(s),L:電感量(H),C:電容量(F)}

        2.電磁波在真空中傳播的速度c=3.00×108m/s,λ=c/f{λ:電磁波的波長(m),f:電磁波頻率}

        注:(1)在LC振蕩過程中,電容器電量最大時,振蕩電流為零;電容器電量為零時,振蕩電流最大;

        高二勻速圓周運動公式介紹

        1.線速度V=s/t=2πr/T

        2.角速度ω=Φ/t=2π/T=2πf

        3.向心加速度a=V2/r=ω2r=(2π/T)2r

        4.向心力F心=ma=mV2/r=mω2r=mr(2π/T)2=mωv=F合

        5.周期與頻率:T=1/f

        6.角速度與線速度的關系:V=ωr;

        7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)

        8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

        強調:

        (1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;

        (2)做勻速圓周運動的物體,其向心力等于合力,并且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。


      猜你感興趣:

      1.高中理科物理公式大全

      2.高中所有物理公式大全

      3.高中物理常用公式

      4.高中物理常用公式歸納

      5.高中物理常用公式總結

      6.高中物理公式歸納

      3770317