亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 高考數(shù)學(xué)平面向量必考知識點2017

      高考數(shù)學(xué)平面向量必考知識點2017

      時間: 鳳婷983 分享

      高考數(shù)學(xué)平面向量必考知識點2017

        平面向量是新編中學(xué)數(shù)學(xué)教材新增的內(nèi)容,也是高考數(shù)學(xué)考試的難點之一,下面是學(xué)習(xí)啦小編給大家?guī)淼母呖紨?shù)學(xué)平面向量必考知識點2017,希望對你有幫助。

        高考數(shù)學(xué)平面向量必考知識點

        平面向量概念:

        (1)向量:既有大小又有方向的量。向量不能比較大小,但向量的模可以比較大小。

        (2)零向量:長度為0的向量,記為0,其方向是任意的,0與任意向量平行。

        (3)單位向量:模為1個單位長度的向量

        (4)平行向量:方向相同或相反的非零向量

        (5)相等向量:長度相等且方向相同的向量

        平面向量數(shù)量積解析

        1、平面向量數(shù)量積:已知兩個非零向量a、b,那么|a||b|cosθ(θ是a與b的夾角)叫做a與b的數(shù)量積或內(nèi)積,記作a·b。零向量與任意向量的數(shù)量積為0。數(shù)量積a·b的幾何意義是:a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

        兩個向量的數(shù)量積等于它們對應(yīng)坐標(biāo)的乘積的和。即:若a=(x1,y1),b=(x2,y2),則a·b=x1·x2+y1·y2

        2、平面向量數(shù)量積具有以下性質(zhì):

        1、a·a=|a|2≥0

        2、a·b=b·a

        3、k(a·b)=(ka)b=a(kb)

        4、a·(b+c)=a·b+a·c

        5、a·b=0<=>a⊥b

        6、a=kb<=>a//b

        7、e1·e2=|e1||e2|cosθ

        平面向量加法解析

        已知向量AB、BC,再作向量AC,則向量AC叫做AB、BC的和,記作AB+BC,即有:AB+BC=AC。

        注:向量的加法滿足所有的加法運算定律,如:交換律、結(jié)合律。

        平面向量減法解析

        1、AB-AC=CB,這種計算法則叫做向量減法的三角形法則,簡記為:共起點、指被減。

        -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

        平面向量公式匯總

        1、定比分點

        定比分點公式(向量P1P=λ?向量PP2)

        設(shè)P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點。則存在一個實數(shù) λ,使 向量P1P=λ?向量PP2,λ叫做點P分有向線段P1P2所成的比。

        若P1(x1,y1),P2(x2,y2),P(x,y),則有

        OP=(OP1+λOP2)(1+λ);(定比分點向量公式)

        x=(x1+λx2)/(1+λ),

        y=(y1+λy2)/(1+λ)。(定比分點坐標(biāo)公式)

        我們把上面的式子叫做有向線段P1P2的定比分點公式

        2、三點共線定理

        若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線

        三角形重心判斷式

        在△ABC中,若GA +GB +GC=O,則G為△ABC的重心

        [編輯本段]向量共線的重要條件

        若b≠0,則a//b的重要條件是存在唯一實數(shù)λ,使a=λb。

        a//b的重要條件是 xy'-x'y=0。

        零向量0平行于任何向量。

        [編輯本段]向量垂直的充要條件

        a⊥b的充要條件是 a?b=0。

        a⊥b的充要條件是 xx'+yy'=0。

        零向量0垂直于任何向量.

        設(shè)a=(x,y),b=(x',y')。

        3、向量的加法

        向量的加法滿足平行四邊形法則和三角形法則。

        AB+BC=AC。

        a+b=(x+x',y+y')。

        a+0=0+a=a。

        向量加法的運算律:

        交換律:a+b=b+a;

        結(jié)合律:(a+b)+c=a+(b+c)。

        4、向量的減法

        如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

        AB-AC=CB. 即“共同起點,指向被減”

        a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

        5、數(shù)乘向量

        實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣?∣a∣。

        當(dāng)λ>0時,λa與a同方向;

        當(dāng)λ<0時,λa與a反方向;

        當(dāng)λ=0時,λa=0,方向任意。

        當(dāng)a=0時,對于任意實數(shù)λ,都有λa=0。

        注:按定義知,如果λa=0,那么λ=0或a=0。

      點擊下一頁分享更多高考數(shù)學(xué)平面向量必考知識點2017

      2535457