山東省高考數(shù)學(xué)一模試卷及答案
山東省的高考正在緊張的備考中,一模考試的數(shù)學(xué)試卷大家要記得做,是非常好的復(fù)習(xí)資料。下面由學(xué)習(xí)啦小編為大家提供關(guān)于山東省高考數(shù)學(xué)一模試卷及答案,希望對大家有幫助!
山東省高考數(shù)學(xué)一模試卷選擇題
本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.已知集合M={0,1,2},N={x|﹣1≤x≤1,x∈Z},則( )
A.M⊆N B.N⊆M C.M∩N={0,1} D.M∪N=N
2.如果復(fù)數(shù)z= (b∈R)的實部和虛部相等,則|z|等于( )
A.3 B.2 C.3 D.2
3.“log2(2x﹣3)<1”是“4x>8”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
4.函數(shù)y=x2+ln|x|的圖象大致為( )
A. B.
C. D.
5.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Asinωx的圖象,只需將函數(shù)y=f(x)的圖象( )
A.向左平移 個單位長度 B.向左平移 個單位長度
C.向右平移 個單位長度 D.向右平移 個單位長度
6.甲、乙、丙 3人站到共有7級的臺階上,若每級臺階最多站2人,同一級臺階上的人不區(qū)分站的位置,則不同的站法總數(shù)是( )
A.210 B.84 C.343 D.336
7.已知變量x,y滿足:: ,則z=( )2x+y的最大值為( )
A. B.2 C.2 D.4
8. 公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為( )
(參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12 B.24 C.36 D.48
9.已知O為坐標(biāo)原點,F(xiàn)是雙曲線 的左焦點,A,B分別為Γ的左、右頂點,P為Γ上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E,直線 BM與y軸交于點N,若|OE|=2|ON|,則 Γ的離心率為( )
A.3 B.2 C. D.
10.曲線 的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為( )
A. B. C. D.
山東省高考數(shù)學(xué)一模試卷非選擇題
二、填空題:本大題共5小題,每小題5分,共25分.
11.設(shè) 的值為 .
12.設(shè)隨機變量ξ服從正態(tài)分布N(2,9),若P(ξ>c+1)=P(ξ
13.現(xiàn)有一半球形原料,若通過切削將該原料加工成一正方體工件,則所得工件體積與原料體積之比的最大值為 .
14.有下列各式: , , ,…則按此規(guī)律可猜想此類不等式的一般形式為: .
15.在 ,點M是△ABC外一點,BM=2CM=2,則AM的最大值與最小值的差為 .
三、解答題:本大題共6小題,共75分.
16.(12分)已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.
17.(12分)一袋中有7個大小相同的小球,其中有2個紅球,3個黃球,2個藍(lán)球,從中任取3個小球.
(I)求紅、黃、藍(lán)三種顏色的小球各取1個的概率;
(II)設(shè)X表示取到的藍(lán)色小球的個數(shù),求X的分布列和數(shù)學(xué)期望.
18.(12分)如圖,菱形ABCD與正三角形BCE的邊長均為2,它們所在平面互相垂直,F(xiàn)D⊥平面ABCD,且FD= .
(I)求證:EF∥平面ABCD;
(Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.
19.(12分)已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N*.
(Ⅰ)設(shè)bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式an;
(Ⅱ)設(shè)Cn= ,數(shù)列{CnCn+2}的前n項和為Tn,是否存在正整數(shù)m,使得Tn< 對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.
20.(13分)已知左、右焦點分別為F1(﹣c,0),F(xiàn)2(c,0)的橢圓 過點 ,且橢圓C關(guān)于直線x=c對稱的圖形過坐標(biāo)原點.
(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程.
(II)圓 與橢圓C交于A,B兩點,R為線段AB上任一點,直線F1R交橢圓C于P,Q兩點,若AB為圓P1的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.
21.(14分)設(shè)f(x)=xex(e為自然對數(shù)的底數(shù)),g(x)=(x+1)2.
(I)記 ,討論函F(x)單調(diào)性;
(II)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個零點.
(i)求參數(shù)a的取值范圍;
(ii)設(shè)x1,x2是G(x)的兩個零點,證明x1+x2+2<0.
>>>下一頁更多精彩“山東省高考數(shù)學(xué)一模試卷答案”