初二數(shù)學(xué)知識(shí)點(diǎn)歸納下冊(cè)
對(duì)世界上的一切學(xué)問與知識(shí)的掌握也并非難事,只要持之以恒地學(xué)習(xí),努力掌握規(guī)律,達(dá)到熟悉的境地,就能融會(huì)貫通,運(yùn)用自如。學(xué)習(xí)需要持之以恒。下面是小編給大家整理的一些初二數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納北師大版
一、多邊形
1、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點(diǎn):多邊形每相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。
4、多邊形的對(duì)角線:連結(jié)多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。
5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。
6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。
說明:一個(gè)多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡(jiǎn)稱多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點(diǎn)的內(nèi)角的鄰補(bǔ)角。
9、多邊形內(nèi)角和定理:n邊形內(nèi)角和等于(n-2)180°。
10、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。
說明:多邊形的外角和是一個(gè)常數(shù)(與邊數(shù)無關(guān)),利用它解決有關(guān)計(jì)算題比利用多邊形內(nèi)角和公式及對(duì)角線求法公式簡(jiǎn)單。無論用哪個(gè)公式解決有關(guān)計(jì)算,都要與解方程聯(lián)系起來,掌握計(jì)算方法。
初二數(shù)學(xué)三角形知識(shí)點(diǎn)
【直角三角形】
◆備考兵法
1.正確區(qū)分勾股定理與其逆定理,掌握常用的勾股數(shù).
2.在解決直角三角形的有關(guān)問題時(shí),應(yīng)注意以勾股定理為橋梁建立方程(組)來解決問題,實(shí)現(xiàn)幾何問題代數(shù)化.
3.在解決直角三角形的相關(guān)問題時(shí),要注意題中是否含有特殊角(30°,45°,60°).若有,則應(yīng)運(yùn)用一些相關(guān)的特殊性質(zhì)解題.
4.在解決許多非直角三角形的計(jì)算與證明問題時(shí),常常通過作高轉(zhuǎn)化為直角三角形來解決.
5.折疊問題是新中考熱點(diǎn)之一,在處理折疊問題時(shí),動(dòng)手操作,認(rèn)真觀察,充分發(fā)揮空間想象力,注意折疊過程中,線段,角發(fā)生的變化,尋找破題思路.
【三角形的重心】
已知:△ABC中,D為BC中點(diǎn),E為AC中點(diǎn),AD與BE交于O,CO延長線交AB于F。求證:F為AB中點(diǎn)。
證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應(yīng)用燕尾定理即得AF=BF,命題得證。
重心的幾條性質(zhì):
1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。
2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。
3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(X1+X2+X3)/3縱坐標(biāo):(Y1+Y2+Y3)/3豎坐標(biāo):(Z1+Z2+Z3)/3
4重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。
5.重心是三角形內(nèi)到三邊距離之積的點(diǎn)。
如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。
初二數(shù)學(xué)知識(shí)點(diǎn)歸納下冊(cè)相關(guān)文章:
★ 初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納與數(shù)學(xué)學(xué)習(xí)方法
★ 八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理
★ 初二數(shù)學(xué)下冊(cè)重點(diǎn)知識(shí)總結(jié)
★ 八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
★ 八年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)梳理
★ 初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)
★ 初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)人教版