浙教版七年級數(shù)學上冊課本教案
學習不光要有不怕困難,永不言敗的精神,還有有勤奮的努力,科學家愛迪生曾說過:“天才就是1%的靈感加上99%的汗水,但那1%的靈感是最重要的,甚至比那99%的汗水都要重要。下面就是小編為大家梳理歸納的內(nèi)容,希望能夠幫助到大家。
浙教版七年級數(shù)學上冊課本教案
第一章有理數(shù)
【1.1正數(shù)和負數(shù)】
第1課時正數(shù)和負數(shù)
教學目標:
1.了解正數(shù)與負數(shù)是實際生活的需要.
2.會判斷一個數(shù)是正數(shù)還是負數(shù).
3.會用正負數(shù)表示互為相反意義的量.
教學重點:會判斷正數(shù)、負數(shù),運用正負數(shù)表示具有相反意義的量,理解表示具有相反意義的量的意義.
教學難點:負數(shù)的引入.
教與學互動設(shè)計:
(一)創(chuàng)設(shè)情境,導入新課
課件展示珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況.
(二)合作交流,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7℃和零下5℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等.
想一想以上都是一些具有相反意義的量,你能用小學算術(shù)中的數(shù)來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數(shù)表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規(guī)定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規(guī)定為負的,正的量用算術(shù)里學過的數(shù)表示,負的量用學過的數(shù)前面加上“-”(讀作負)號來表示(零除外).
活動每組同學之間相互合作交流,一同學說出有關(guān)相反意義的兩個量,由其他同學用正負數(shù)表示.
討論什么樣的數(shù)是負數(shù)?什么樣的數(shù)是正數(shù)?0是正數(shù)還是負數(shù)?自己列舉正數(shù)、負數(shù).
總結(jié)正數(shù)是大于0的數(shù),負數(shù)是在正數(shù)前面加“-”號的數(shù),0既不是正數(shù),也不是負數(shù),是正數(shù)與負數(shù)的分界點.
(三)應用遷移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負數(shù)表示.
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等.
【例2】在某次乒乓球檢測中,一只乒乓球超過標準質(zhì)量0.02g,記作+0.02g,那么-0.03g表示什么?
【例3】某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正.例如,9:15記為-1,10:45記為1等等.依此類推,上午7:45應記為()
A.3B.-3C.-2.5D.-7.45
【點撥】讀懂題意是解決本題的關(guān)鍵.7:45與10:00相差135分鐘.
(四)總結(jié)反思,拓展升華
為了表示現(xiàn)實生活中具有相反意義的量引進了負數(shù).正數(shù)就是我們過去學過(除零外)的數(shù),在正數(shù)前加上“-”號就是負數(shù),不能說“有正號的數(shù)是正數(shù),有負號的數(shù)是負數(shù)”.另外,0既不是正數(shù),也不是負數(shù).
1.下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):
星期日一二三四五六
(元)+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小張一共用掉了多少錢?存進了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
(3)如果不用正、負數(shù)的方法記賬,你還可以怎樣記賬?比較各種記賬的優(yōu)劣.
2.數(shù)學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4.用“+”表示“站”,“-”(負號)表示“蹲”.
(1)由一個同學大聲喊:+1,-2,-3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:-1,-2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;
(2)增加游戲難度,把4個同學順序調(diào)整一下,但每個人記作自己原來的編號,再重復(1)中的游戲.
(五)課堂跟蹤反饋
夯實基礎(chǔ)
1.填空題:
(1)如果節(jié)約用水30噸記為+30噸,那么浪費20噸記為噸.
(2)如果4年后記作+4年,那么8年前記作年.
(3)如果運出貨物7噸記作-7噸,那么+100噸表示.
(4)一年內(nèi),小亮體重增加了3kg,記作+3kg;小陽體重減少了2kg,則小陽增加了.
2.中午12時,水位低于標準水位0.5米,記作-0.5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0.5米.
(1)用正數(shù)或負數(shù)記錄下午1時和下午5時的水位;
(2)下午5時的水位比中午12時水位高多少?
提升能力
3.糧食每袋標準重量是50公斤,現(xiàn)測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正數(shù)表示,請用正數(shù)和負數(shù)記錄甲、乙、丙三袋糧食的超重數(shù)和不足數(shù).
(六)課時小結(jié)
1.與以前相比,0的意義又多了哪些內(nèi)容?
2.怎樣用正數(shù)和負數(shù)表示具有相反意義的量?(用正數(shù)表示其中具有一種意義的量,另一種量用負數(shù)表示)
第2課時正數(shù)和負數(shù)的應用
教學目標:
1.通過對“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念,能利用正負數(shù)正確表示具有相反意義的量(規(guī)定了向指定方向變化的量);
2.進一步體驗正負數(shù)在生產(chǎn)生活中的廣泛應用,提高解決實際問題的能力.
教學重點:深化對正負數(shù)概念的理解.
教學難點:正確理解和表示向指定方向變化的量.
教與學互動設(shè)計:
(一)知識回顧和理解
通過對上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著具有兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
[問題1]:“零”為什么既不是正數(shù)也不是負數(shù)呢?
學生思考討論,借助舉例說明.
參考例子:用正數(shù)、負數(shù)和零表示零上溫度、零下溫度和零度.
思考“0”在實際問題中有什么意義?
歸納“0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的水位變化,記作:0m.
[問題2]:引入負數(shù)后,數(shù)按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進出口總額的增長率.
解后語:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數(shù)來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數(shù)表示它們.
鞏固練習
1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247,孟加拉減少88.
(1)用正數(shù)和負數(shù)表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結(jié)果與增長量有什么關(guān)系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數(shù)據(jù)的分析,你想到了什么?
閱讀與思考
(課本P6)用正數(shù)和負數(shù)表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97mm的零件是否合格?
2.你知道還有哪些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
(三)應用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5℃,則乙冷庫的溫度是.
2.一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?
3.摩托車廠本周計劃每天生產(chǎn)250輛摩托車,由于工人實行輪休,每天上班的人數(shù)不一定相等,實際每天生產(chǎn)量(與計劃量相比)的增減值如下表:
星期一二三四
增減-5+7-3+4
根據(jù)上面的記錄,問:哪幾天生產(chǎn)的摩托車比計劃量多?星期幾生產(chǎn)的摩托車最多,是多少輛?星期幾生產(chǎn)的摩托車最少,是多少輛?
類比例題,要求學生注意書寫格式,體會正負數(shù)的應用.
(四)課時小結(jié)(師生共同完成)
【1.2有理數(shù)】
第1課時有理數(shù)
教學目標:
1.理解有理數(shù)的意義.
2.能把給出的有理數(shù)按要求分類.
3.了解0在有理數(shù)分類中的作用.
教學重點:會把所給的各數(shù)填入它所在的數(shù)集圖里.
教學難點:掌握有理數(shù)的兩種分類.
教與學互動設(shè)計:
(一)創(chuàng)設(shè)情境,導入新課
討論交流現(xiàn)在,同學們都已經(jīng)知道除了我們小學里所學的數(shù)之外,還有另一種形式的數(shù),即負數(shù).大家討論一下,到目前為止,你已經(jīng)認識了哪些類型的數(shù).
(二)合作交流,解讀探究
3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2…
議一議你能說說這些數(shù)的特點嗎?
學生回答,并相互補充:有小學學過的正整數(shù)、0、分數(shù),也有負整數(shù)、負分數(shù).
說明我們把所有的這些數(shù)統(tǒng)稱為有理數(shù).
試一試你能對以上各種類型的數(shù)作出一張分類表嗎?
有理數(shù)
做一做以上按整數(shù)和分數(shù)來分,那可不可以按性質(zhì)(正數(shù)、負數(shù))來分呢,試一試.
有理數(shù)
數(shù)的集合
把所有正數(shù)組成的集合,叫做正數(shù)集合.
試一試試著歸納總結(jié),什么是負數(shù)集合、整數(shù)集合、分數(shù)集合、有理數(shù)集合.
(三)應用遷移,鞏固提高
【例1】把下列各數(shù)填入相應的集合內(nèi):
,3.1416,0,2004,-,-0.23456,10%,10.1,0.67,-89
【例2】以下是兩位同學的分類方法,你認為他們分類的結(jié)果正確嗎?為什么?
有理數(shù)有理數(shù)
(四)總結(jié)反思,拓展升華
提問:今天你獲得了哪些知識?
由學生自己小結(jié),然后教師總結(jié):今天我們學習了有理數(shù)的定義和兩種分類的方法.我們要能正確地判斷一個數(shù)屬于哪一類,要特別注意“0”的正確說法.
下面兩個圈分別表示負數(shù)集合和分數(shù)集合,你能說出兩個圖的重疊部分表示什么數(shù)的集合嗎?
(五)課堂跟蹤反饋
夯實基礎(chǔ)
1.把下列各數(shù)填入相應的大括號內(nèi):
-7,0.125,,-3,3,0,50%,-0.3
(1)整數(shù)集合{};
(2)分數(shù)集合{};
(3)負分數(shù)集合{};
(4)非負數(shù)集合{};
(5)有理數(shù)集合{}.
2.下列說法中正確的是()
A.整數(shù)就是自然數(shù)
B.0不是自然數(shù)
C.正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)
D.0是整數(shù),而不是正數(shù)
提升能力
3.字母a可以表示數(shù),在我們現(xiàn)在所學的范圍內(nèi),你能否試著說明a可以表示什么樣的數(shù)?
第2課時數(shù)軸
教學目標:
1.掌握數(shù)軸三要素,能正確畫出數(shù)軸.
2.能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù).
教學重點:數(shù)軸的概念.
教學難點:從直觀認識到理性認識,從而建立數(shù)軸概念.
教與學互動設(shè)計:
(一)創(chuàng)設(shè)情境,導入新課
課件展示課本P7的“問題”(學生畫圖)
(二)合作交流,解讀探究
師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數(shù)分別用正數(shù)和負數(shù)來表示,即用一直線上的點把正數(shù)、負數(shù)、0都表示出來,也就是本節(jié)要學的內(nèi)容——數(shù)軸.
【點撥】(1)引導學生學會畫數(shù)軸.
第一步:畫直線,定原點.
第二步:規(guī)定從原點向右的方向為正(左邊為負方向).
第三步:選擇適當?shù)拈L度為單位長度(據(jù)情況而定).
第四步:拿出教學溫度計,由學生觀察溫度計的結(jié)構(gòu)和數(shù)軸的結(jié)構(gòu)是否有共同之處.
對比思考原點相當于什么;正方向與什么一致;單位長度又是什么?
(2)有了以上基礎(chǔ),我們可以來試著定義數(shù)軸:
規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸.
做一做學生自己練習畫出數(shù)軸.
試一試你能利用你自己畫的數(shù)軸上的點來表示數(shù)4,1.5,-3,-2,0嗎?
討論若a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?
小結(jié)整數(shù)在數(shù)軸上都能找到點表示嗎?分數(shù)呢?
可見,所有的都可以用數(shù)軸上的點表示;都在原點的左邊,都在原點的右邊.
(三)應用遷移,鞏固提高
【例1】下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?
【例2】試一試:用你畫的數(shù)軸上的點表示4,1.5,-3,-,0.
【例3】下列語句:
?、贁?shù)軸上的點只能表示整數(shù);②數(shù)軸是一條直線;③數(shù)軸上的一個點只能表示一個數(shù);④數(shù)軸上找不到既不表示正數(shù),又不表示負數(shù)的點;⑤數(shù)軸上的點所表示的數(shù)都是有理數(shù).正確的說法有()
A.1個B.2個C.3個D.4個
【例4】在數(shù)軸上表示-2和1,并根據(jù)數(shù)軸指出所有大于-2而小于1的整數(shù).
【例5】數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度是1cm,若在這個數(shù)軸上隨意畫出一條長為2000cm的線段AB,則線段AB蓋住的整點有()
A.1998個或1999個B.1999個或2000個
C.2000個或2001個D.2001個或2002個
(四)總結(jié)反思,拓展升華
數(shù)軸是非常重要的工具,它使數(shù)和直線上的點建立了一一對應的關(guān)系.它揭示了數(shù)和形的內(nèi)在聯(lián)系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數(shù)軸的三要素,正確畫出數(shù)軸.提醒大家,所有的有理數(shù)都可以用數(shù)軸上的相關(guān)點來表示,但反過來并不成立,即數(shù)軸上的點并不都表示有理數(shù).
(五)課堂跟蹤反饋
夯實基礎(chǔ)
1.規(guī)定了、、的直線叫做數(shù)軸,所有的有理數(shù)都可從用上的點來表示.
2.P從數(shù)軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數(shù)是.
3.把數(shù)軸上表示2的點移動5個單位長度后,所得的對應點表示的數(shù)是()
A.7B.-3
C.7或-3D.不能確定
4.在數(shù)軸上,原點及原點左邊的點所表示的數(shù)是()
A.正數(shù)B.負數(shù)
C.不是負數(shù)D.不是正數(shù)
5.數(shù)軸上表示5和-5的點離開原點的距離是,但它們分別表示.
提升能力
6.與原點距離為3.5個單位長度的點有2個,它們分別是和.
7.畫出一條數(shù)軸,并把下列數(shù)表示在數(shù)軸上:
+2,-3,0.5,0,-4.5,4,3.
開放探究
8.在數(shù)軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數(shù)軸上,最多能覆蓋個整數(shù)點.
9.下列四個數(shù)中,在-2到0之間的數(shù)是()
A.-1B.1C.-3D.3
第3課時相反數(shù)
教學目標:
1.借助數(shù)軸了解相反數(shù)的概念,知道互為相反數(shù)的位置關(guān)系.
2.給一個數(shù),能求出它的相反數(shù).
教學重點:理解相反數(shù)的意義.
教學難點:理解和掌握雙重符號簡化的規(guī)律.
教與學互動設(shè)計:
(一)創(chuàng)設(shè)情境,導入新課
活動請一個學生到講臺前面對大家,向前走5步,向后走5步.
交流如果向前走為正,那向前走5步與向后走5步分別記作什么?
(二)合作交流,解讀探究
1.觀察下列數(shù):6和-6,2和-2,7和-7,和-,并把它們在數(shù)軸上標出.
想一想(1)上述各對數(shù)有什么特點?
(2)表示這四對數(shù)的點在數(shù)軸上有什么特點?
(3)你能夠?qū)懗鼍哂猩鲜鎏攸c的n組數(shù)嗎?
觀察像這樣只有符號不同的兩個數(shù)叫相反數(shù).
互為相反數(shù)的兩個數(shù)在數(shù)軸上的對應點(0除外)是在原點兩旁,并且與原點距離相等的兩個點.即:我們把a的相反數(shù)記為-a,并且規(guī)定0的相反數(shù)就是零.
總結(jié)在正數(shù)前面添上一個“-”號,就得到這個正數(shù)的相反數(shù),是一個負數(shù);把負數(shù)前的“-”號去掉,就得到這個負數(shù)的相反數(shù),是一個正數(shù).
2.在任意一個數(shù)前面添上“-”號,新的數(shù)就是原數(shù)的相反數(shù).如-(+5)=-5,表示+5的相反數(shù)為-5;-(-5)=5,表示-5的相反數(shù)是5;-0=0,表示0的相反數(shù)是0.
(三)應用遷移,鞏固提高
【例1】填空
(1)-5.8是的相反數(shù),的相反數(shù)是-(+3),a的相反數(shù)是;a-b的相反數(shù)是,0的相反數(shù)是.
(2)正數(shù)的相反數(shù)是,負數(shù)的相反數(shù)是,的相反數(shù)是它本身.
【例2】下列判斷不正確的有()
?、倩橄喾磾?shù)的兩個數(shù)一定不相等;②互為相反數(shù)的數(shù)在數(shù)軸上的點一定在原點的兩邊;③所有的有理數(shù)都有相反數(shù);④相反數(shù)是符號相反的兩個點.
A.1個B.2個C.3個D.4個
【例3】化簡下列各符號:
(1)-[-(-2)];(2)+{-[-(+5)]};
(3)-{-{-…-(-6)}…}(共n個負號).
【歸納】化簡的規(guī)律是:有偶數(shù)個負號,結(jié)果為正;有奇數(shù)個負號,結(jié)果為負.
【例4】數(shù)軸上A點表示+4,B、C兩點所表示的數(shù)是互為相反數(shù),且C到A的距離為2,則點B和點C各對應什么數(shù)?
(四)總結(jié)反思,拓展升華
【歸納】(1)相反數(shù)的概念及表示方法.
(2)相反數(shù)的代數(shù)意義和幾何意義.
(3)符號的化簡.
(五)課堂跟蹤反饋
夯實基礎(chǔ)
1.判斷題
(1)-3是相反數(shù).()
(2)-7和7是相反數(shù).()
(3)-a的相反數(shù)是a,它們互為相反數(shù).()
(4)符號不同的兩個數(shù)互為相反數(shù).()
2.分別寫出下列各數(shù)的相反數(shù),并把它們在數(shù)軸上表示出來.
1,-2,0,4.5,-2.5,3
3.若一個數(shù)的相反數(shù)不是正數(shù),則這個數(shù)一定是()
A.正數(shù)B.正數(shù)或0
C.負數(shù)D.負數(shù)或0
4.一個數(shù)比它的相反數(shù)小,這個數(shù)是()
A.正數(shù)B.負數(shù)
C.非負數(shù)D.非正數(shù)
5.數(shù)軸上表示互為相反數(shù)的兩個點之間的距離為4,則這兩個數(shù)是.
提升能力
6.若a與a-2互為相反數(shù),則a的相反數(shù)是.
7.已知有理數(shù)m、-3、n在數(shù)軸上位置如圖所示,將m、-3、n的相反數(shù)在數(shù)軸上表示出來,并將這6個數(shù)用“<”連接起來.