九年級上冊數(shù)學復習資料備戰(zhàn)中考2021
學習效率的高低,是一個學生綜合學習能力的體現(xiàn)。在學生時代,學習效率的高低主要對學習成績產(chǎn)生影響。那么你們知道關于九年級上冊數(shù)學復習資料備戰(zhàn)中考2021內(nèi)容還有哪些呢?下面是小編為大家準備關于九年級上冊數(shù)學復習資料備戰(zhàn)中考2021,歡迎參閱。
九年級上冊數(shù)學復習資料備戰(zhàn)中考章一
知識點1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。
2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。
3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
知識點2:直角坐標系與點的位置
1、直角坐標系中,點A(3,0)在y軸上。
2、直角坐標系中,x軸上的任意點的橫坐標為0。
3、直角坐標系中,點A(1,1)在第一象限。
4、直角坐標系中,點A(-2,3)在第四象限。
5、直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變量的值求函數(shù)值
1、當x=2時,函數(shù)y=的值為1。
2、當x=3時,函數(shù)y=的值為1。
3、當x=-1時,函數(shù)y=的值為1。
知識點4:基本函數(shù)的概念及性質(zhì)
1、函數(shù)y=-8x是一次函數(shù)。
2、函數(shù)y=4x+1是正比例函數(shù)。
3、函數(shù)是反比例函數(shù)。
4、拋物線y=-3(x-2)2-5的開口向下。
5、拋物線y=4(x-3)2-10的對稱軸是x=3。
6、拋物線的頂點坐標是(1,2)。
7、反比例函數(shù)的圖象在第一、三象限。
知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。
2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。
3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。
知識點6:特殊三角函數(shù)值
1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
知識點7:圓的基本性質(zhì)
1、半圓或直徑所對的圓周角是直角。
2、任意一個三角形一定有一個外接圓。
3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4、在同圓或等圓中,相等的圓心角所對的弧相等。
5、同弧所對的圓周角等于圓心角的一半。
6、同圓或等圓的半徑相等。
7、過三個點一定可以作一個圓。
8、長度相等的兩條弧是等弧。
9、在同圓或等圓中,相等的圓心角所對的弧相等。
10、經(jīng)過圓心平分弦的直徑垂直于弦。
知識點8:直線與圓的位置關系
1、直線與圓有公共點時,叫做直線與圓相切。
2、三角形的外接圓的圓心叫做三角形的外心。
3、弦切角等于所夾的弧所對的圓心角。
4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5、垂直于半徑的直線必為圓的切線。
6、過半徑的外端點并且垂直于半徑的直線是圓的切線。
7、垂直于半徑的直線是圓的切線。
8、圓的切線垂直于過切點的半徑。
九年級上冊數(shù)學復習資料備戰(zhàn)中考章二
1、概念:
把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角.
旋轉三要素:旋轉中心、旋轉方面、旋轉角
2、旋轉的性質(zhì):
(1)旋轉前后的兩個圖形是全等形;
(2)兩個對應點到旋轉中心的距離相等
(3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角
3、中心對稱:
把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心.
這兩個圖形中的對應點叫做關于中心的對稱點.
4、中心對稱的性質(zhì):
(1)關于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.
(2)關于中心對稱的兩個圖形是全等圖形.
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
九年級上冊數(shù)學復習資料備戰(zhàn)中考章三
一、軸對稱與軸對稱圖形:
1.軸對稱:把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。
2.軸對稱圖形:如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
注意:對稱軸是直線而不是線段
3.軸對稱的性質(zhì):
(1)關于某條直線對稱的兩個圖形是全等形;
(2)如果兩個圖形關于某條直線對稱,那么對稱軸是對應點連線的垂直平分線;
(3)兩個圖形關于某條直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上;
(4)如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質(zhì):①線段垂直平分線上的點到這條線段兩個端點的距離相等;
②到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點,并且這一點到三個頂點的距離相等。
5.角的平分線:
(1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.
(2)性質(zhì):①在角的平分線上的點到這個角的兩邊的距離相等.
②到一個角的兩邊距離相等的點,在這個角的平分線上.
注意:根據(jù)角平分線的性質(zhì),三角形的三個內(nèi)角的平分線交于一點,并且這一點到三條邊的距離相等.
6.等腰三角形的性質(zhì)與判定:
性質(zhì):
(1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對等角:等腰三角形的兩個底角相等。
說明:等腰三角形的性質(zhì)除“三線合一”外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;④等腰三角形底邊上的中點到兩腰的距離相等。
判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
7.等邊三角形的性質(zhì)與判定:
性質(zhì):(1)等邊三角形的三個角都相等,并且每個角都等于60°;
(2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有“三線合一”。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。
判定定理:有一個角是60°的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
二、中心對稱與中心對稱圖形:
1.中心對稱:把一個圖形繞著某一個點旋轉180°,如果它能夠和另外一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心,這兩個圖形中的對應點叫做關于中心的對稱點。
2.中心對稱圖形:在平面內(nèi),一個圖形繞某個點旋轉180°,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
3.中心對稱的性質(zhì):(1)關于中心對稱的兩個圖形是全等形;
(2)在成中心對稱的兩個圖形中,連接對稱點的線段都經(jīng)過對稱中心,并且被對稱中心平分;
(3)成中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
九年級上冊數(shù)學復習資料備戰(zhàn)中考章四
考點1:確定事件和隨機事件
考核要求:
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區(qū)分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點2:事件發(fā)生的可能性大小,事件的概率
考核要求:
(1)知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機事件發(fā)生的可能事件的大小并排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會根據(jù)大數(shù)次試驗所得頻率估計事件的概率。
注意:
(1)在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會發(fā)生”等詞語來表述事件發(fā)生的可能性的大小;
(2)事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗的次數(shù)的多少有關,只有當試驗次數(shù)足夠大時才能更精確。
考點3:等可能試驗中事件的概率問題及概率計算
考核要求
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區(qū)域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規(guī)則公平性與決策合理性等簡單概率問題。
注意:
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點4:數(shù)據(jù)整理與統(tǒng)計圖表
考核要求:
(1)知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;
(2)結合有關代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關信息。
考點5:統(tǒng)計的含義
考核要求:
(1)知道統(tǒng)計的意義和一般研究過程;
(2)認識個體、總體和樣本的區(qū)別,了解樣本估計總體的思想方法。
考點6:平均數(shù)、加權平均數(shù)的概念和計算
考核要求:
(1)理解平均數(shù)、加權平均數(shù)的概念;
(2)掌握平均數(shù)、加權平均數(shù)的計算公式。注意:在計算平均數(shù)、加權平均數(shù)時要防止數(shù)據(jù)漏抄、重抄、錯抄等錯誤現(xiàn)象,提高運算準確率。
考點7:中位數(shù)、眾數(shù)、方差、標準差的概念和計算
考核要求:
(1)知道中位數(shù)、眾數(shù)、方差、標準差的概念;
(2)會求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標準差,并能用于解決簡單的統(tǒng)計問題。
注意:
(1)當一組數(shù)據(jù)中出現(xiàn)極值時,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;
(2)求中位數(shù)之前必須先將數(shù)據(jù)排序。
考點8:頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖
考核要求:
(1)理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關系式;
(2)會畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關的實際問題。解題時要注意:頻數(shù)、頻率能反映每個對象出現(xiàn)的頻繁程度,但也存在差別:在同一個問題中,頻數(shù)反映的是對象出現(xiàn)頻繁程度的絕對數(shù)據(jù),所有頻數(shù)之和是試驗的總次數(shù);頻率反映的是對象頻繁出現(xiàn)的相對數(shù)據(jù),所有的頻率之和是1。
考點9:中位數(shù)、眾數(shù)、方差、標準差、頻數(shù)、頻率的應用
考核要求:
(1)了解基本統(tǒng)計量(平均數(shù)、眾數(shù)、中位數(shù)、方差、標準差、頻數(shù)、頻率)的意計算及其應用,并掌握其概念和計算方法;
(2)正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計算結果作出判斷和預測;
(3)能將多個圖表結合起來,綜合處理圖表提供的數(shù)據(jù),會利用各種統(tǒng)計量來進行推理和分析,研究解決有關的實際生活中問題,然后作出合理的解決。
九年級上冊數(shù)學復習資料備戰(zhàn)中考2021相關文章: