亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

      高二數(shù)學模擬小測試的知識點歸納

      時間: 贊銳0 分享

      只有概念清楚,方法全面,遇到題目時,就能很快的得到解題方法,或者面對一個新的習題,就能聯(lián)想到我們平時做過的習題的方法,達到迅速解答。以下是小編給大家整理的高二數(shù)學模擬小測試的知識點歸納,希望大家能夠喜歡!

      高二數(shù)學模擬小測試的知識點歸納1

      1、圓的定義:

      平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

      2、圓的方程

      (1)標準方程,圓心,半徑為r;

      (2)一般方程

      當時,方程表示圓,此時圓心為,半徑為

      當時,表示一個點;當時,方程不表示任何圖形。

      (3)求圓方程的方法:

      一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

      需求出a,b,r;若利用一般方程,需要求出D,E,F;

      另外要注意多利用圓的幾何性質:如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

      3、直線與圓的位置關系:

      直線與圓的位置關系有相離,相切,相交三種情況:

      (1)設直線,圓,圓心到l的距離為,則有

      (2)過圓外一點的切線:

      ①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

      (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

      4、圓與圓的位置關系:

      通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

      設圓,

      兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

      當時兩圓外離,此時有公切線四條;

      當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

      當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

      當時,兩圓內切,連心線經(jīng)過切點,只有一條公切線;

      當時,兩圓內含;當時,為同心圓。

      注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

      圓的輔助線一般為連圓心與切線或者連圓心與弦中點

      高二數(shù)學模擬小測試的知識點歸納2

      1.幾何概型的定義:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。

      2.幾何概型的概率公式:P(A)=構成事件A的區(qū)域長度(面積或體積);

      試驗的全部結果所構成的區(qū)域長度(面積或體積)

      3.幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

      4.幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數(shù)的;而幾何概型則是在試驗中出現(xiàn)無限多個結果,且與事件的區(qū)域長度(或面積、體積等)有關,即試驗結果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。

      通過以上對于幾何概型的基本知識點的梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個特點,無限性是指在一次試驗中,基本事件的個數(shù)可以是無限的,這是區(qū)分幾何概型與古典概型的關鍵所在;等可能性是指每一個基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長度、面積(體積)和角度等”與“試驗的基本事件所占總長度、面積(體積)和角度等”之比來表示。下面就幾何概型常見類型題作一歸納梳理。

      高二數(shù)學模擬小測試的知識點歸納3

      1.輾轉相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

      2.所謂輾轉相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).

      3.更相減損術是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).

      4.秦九韶算法是一種用于計算一元二次多項式的值的方法.

      5.常用的排序方法是直接插入排序和冒泡排序.

      6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.

      7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結果.

      8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應的進制數(shù).

      高二數(shù)學模擬小測試的知識點歸納相關文章

      高二數(shù)學知識點總結

      高二數(shù)學知識點總結歸納

      高二數(shù)學知識點歸納總結

      高二數(shù)學考試必考知識點

      高二數(shù)學知識點2020總結

      高二數(shù)學考點知識點總結復習大綱

      高二數(shù)學知識點復習總結

      高二數(shù)學知識點歸納

      高二數(shù)學知識點小結

      高二數(shù)學知識點總結詳細

      1071308