亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

      高二下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)

      時(shí)間: 舒淇4599 分享

      高二本身的知識(shí)體系而言,它主要是對(duì)高一知識(shí)的深入和新知識(shí)模塊的補(bǔ)充。以數(shù)學(xué)為例,除去不同學(xué)校教學(xué)進(jìn)度的不同,我們會(huì)在高二接觸到更為深入的函數(shù),也將開始學(xué)習(xí)從未接觸過(guò)的復(fù)數(shù)、圓錐曲線等題型。下面小編為大家?guī)?lái)高二下學(xué)期數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)您有所幫助!

      高二下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)

      高二下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)

      集合的分類:

      (1)按元素屬性分類,如點(diǎn)集,數(shù)集。

      (2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

      關(guān)于集合的概念:

      (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

      (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

      (3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

      集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

      含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

      非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

      在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

      整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

      有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

      實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對(duì)應(yīng)的數(shù)。)

      1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

      有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

      例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

      無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

      2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

      例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

      而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

      {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

      大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

      一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

      它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

      例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

      高二年級(jí)下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)

      數(shù)列定義:

      如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

      等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)

      前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

      以上n均屬于正整數(shù)。

      解釋說(shuō)明:

      從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。

      在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。

      且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d

      它可以看作等差數(shù)列廣義的通項(xiàng)公式。

      推論_式:

      從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

      若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。

      基本公式:

      和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2

      項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1

      首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)

      末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)

      末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差

      高二數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)

      復(fù)合函數(shù)定義域

      若函數(shù)y=f(u)的定義域是B,u=g(x)的定義域是A,則復(fù)合函數(shù)y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。

      求函數(shù)的定義域主要應(yīng)考慮以下幾點(diǎn):

      ⑴當(dāng)為整式或奇次根式時(shí),R的值域;

      ⑵當(dāng)為偶次根式時(shí),被開方數(shù)不小于0(即≥0);

      ⑶當(dāng)為分式時(shí),分母不為0;當(dāng)分母是偶次根式時(shí),被開方數(shù)大于0;

      ⑷當(dāng)為指數(shù)式時(shí),對(duì)零指數(shù)冪或負(fù)整數(shù)指數(shù)冪,底不為0。

      ⑸當(dāng)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的,它的定義域應(yīng)是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。

      ⑹分段函數(shù)的定義域是各段上自變量的取值集合的并集。

      ⑺由實(shí)際問(wèn)題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實(shí)際意義對(duì)自變量的要求

      ⑻對(duì)于含參數(shù)字母的函數(shù),求定義域時(shí)一般要對(duì)字母的取值情況進(jìn)行分類討論,并要注意函數(shù)的定義域?yàn)榉强占稀?/p>

      ⑼對(duì)數(shù)函數(shù)的真數(shù)必須大于零,底數(shù)大于零且不等于1。

      ⑽三角函數(shù)中的切割函數(shù)要注意對(duì)角變量的限制。

      復(fù)合函數(shù)常見題型

      (ⅰ)已知f(x)定義域?yàn)锳,求f[g(x)]的定義域:實(shí)質(zhì)是已知g(x)的范圍為A,以此求出x的范圍。

      (ⅱ)已知f[g(x)]定義域?yàn)锽,求f(x)的定義域:實(shí)質(zhì)是已知x的范圍為B,以此求出g(x)的范圍。

      (ⅲ)已知f[g(x)]定義域?yàn)镃,求f[h(x)]的定義域:實(shí)質(zhì)是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。


      高二下學(xué)期數(shù)學(xué)知識(shí)點(diǎn)相關(guān)文章:

      2022高二上學(xué)期數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

      高二上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      人教版高二數(shù)學(xué)上冊(cè)必修知識(shí)點(diǎn)

      高二數(shù)學(xué)必修2圓的參數(shù)方程知識(shí)點(diǎn)

      高二物理下半學(xué)期知識(shí)點(diǎn)總結(jié)歸納

      高二數(shù)學(xué)上學(xué)期必記的重要知識(shí)點(diǎn)分析

      高二數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)總結(jié)歸納

      1581819