高二數(shù)學(xué)知識(shí)點(diǎn)小總結(jié)2020
要成為德、智、體兼優(yōu)的勞動(dòng)者,鍛煉身體極為重要。身體健康是求學(xué)和將來(lái)工作之本。運(yùn)動(dòng)能治百病,能使人身體健康,頭腦敏捷,對(duì)學(xué)習(xí)有促進(jìn)作用。下面給大家分享一些關(guān)于高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2020,希望對(duì)大家有所幫助。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一、直線(xiàn)與圓:
1、直線(xiàn)的傾斜角的范圍是
在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線(xiàn),如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線(xiàn)重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線(xiàn)的傾斜角。當(dāng)直線(xiàn)與軸重合或平行時(shí),規(guī)定傾斜角為0;
2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.
過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=(y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導(dǎo)的方法。
3、直線(xiàn)方程:⑴點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn)斜率為,則直線(xiàn)方程為,
⑵斜截式:直線(xiàn)在軸上的截距為和斜率,則直線(xiàn)方程為
4、直線(xiàn)與直線(xiàn)的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=0
5、點(diǎn)到直線(xiàn)的距離公式;
兩條平行線(xiàn)與的距離是
6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:
注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).
8、直線(xiàn)與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①相離②相切③相交
9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線(xiàn)與圓相交所得弦長(zhǎng)
二、圓錐曲線(xiàn)方程:
1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;
2、雙曲線(xiàn):①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線(xiàn)或c2=a2+b2
3、拋物線(xiàn):①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線(xiàn)x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;
4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(zhǎng)公式:
三、直線(xiàn)、平面、簡(jiǎn)單幾何體:
1、學(xué)會(huì)三視圖的分析:
2、斜二測(cè)畫(huà)法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);
(2)平行于x軸的線(xiàn)段長(zhǎng)不變,平行于y軸的線(xiàn)段長(zhǎng)減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
⑷球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
(1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。
(2)平面與平面平行:①線(xiàn)面平行面面平行。
(3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內(nèi)的兩條相交直線(xiàn)
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線(xiàn)所成角的求法:平移法:平移直線(xiàn),構(gòu)造三角形;
⑵直線(xiàn)與平面所成的角:直線(xiàn)與射影所成的角
四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線(xiàn)切線(xiàn)問(wèn)題)
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.
2.導(dǎo)數(shù)的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率
①k=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導(dǎo)數(shù)的四則運(yùn)算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導(dǎo)數(shù);
②求方程的根;
③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
五、常用邏輯用語(yǔ):
1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.
3、邏輯聯(lián)結(jié)詞:
⑴且(and):命題形式pq;pqpqpqp
⑵或(or):命題形式pq;真真真真假
⑶非(not):命題形式p.真假假真假
假真假真真
假假假假真
“或命題”的真假特點(diǎn)是“一真即真,要假全假”;
“且命題”的真假特點(diǎn)是“一假即假,要真全真”;
“非命題”的真假特點(diǎn)是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱(chēng)命題與特稱(chēng)命題:
短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱(chēng)命題。
短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
1.不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過(guò)的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
異面直線(xiàn)定義:不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)
異面直線(xiàn)性質(zhì):既不平行,又不相交.
異面直線(xiàn)判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線(xiàn)與平面內(nèi)不過(guò)該店的直線(xiàn)是異面直線(xiàn)
異面直線(xiàn)所成角:作平行,令兩線(xiàn)相交,所得銳角或直角,即所成角.兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直.
求異面直線(xiàn)所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).
(8)空間直線(xiàn)與平面之間的位置關(guān)系
直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα
(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);αβ
相交——有一條公共直線(xiàn).α∩β=b
2、空間中的平行問(wèn)題
(1)直線(xiàn)與平面平行的判定及其性質(zhì)
線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內(nèi)一條直線(xiàn)平行,則該直線(xiàn)與此平面平行.
線(xiàn)線(xiàn)平行線(xiàn)面平行
線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,
那么這條直線(xiàn)和交線(xiàn)平行.線(xiàn)面平行線(xiàn)線(xiàn)平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
(1)如果一個(gè)平面內(nèi)的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行
(線(xiàn)面平行→面面平行),
(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線(xiàn)對(duì)應(yīng)平行,那么這兩個(gè)平面平行.
(線(xiàn)線(xiàn)平行→面面平行),
(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線(xiàn)與另一個(gè)平面平行.(面面平行→線(xiàn)面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行.(面面平行→線(xiàn)線(xiàn)平行)
3、空間中的垂直問(wèn)題
(1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義
兩條異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直.
線(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內(nèi)的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直.
平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
線(xiàn)面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面.
性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行.
面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直.
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面.
4、空間角問(wèn)題
(1)直線(xiàn)與直線(xiàn)所成的角
兩平行直線(xiàn)所成的角:規(guī)定為.
兩條相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角.
兩條異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn),形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角.
(2)直線(xiàn)和平面所成的角
平面的平行線(xiàn)與平面所成的角:規(guī)定為.平面的垂線(xiàn)與平面所成的角:規(guī)定為.
平面的斜線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內(nèi)的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角.
求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計(jì)算”.
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),
在解題時(shí),注意挖掘題設(shè)中主要信息:
(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);
(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn).
(3)二面角和二面角的平面角
二面角的定義:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角.
直二面角:平面角是直角的二面角叫直二面角.
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線(xiàn)得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2020相關(guān)文章:
★ 2020高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 2020高二數(shù)學(xué)老師的工作計(jì)劃
★ 2020高二下學(xué)期數(shù)學(xué)教師工作總結(jié)參考
★ 2020高二新學(xué)期數(shù)學(xué)老師的工作計(jì)劃
★ 2020高二數(shù)學(xué)教學(xué)工作計(jì)劃
★ 高三文科數(shù)學(xué)2020重要知識(shí)點(diǎn)歸納