高三數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)
2022高三數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)
為了學(xué)習(xí),廢寢忘食一點(diǎn)也不是難事,只要你做到了有興趣。你們平時(shí)有什么好的學(xué)習(xí)方法嗎?下面是小編給大家?guī)?lái)的高三數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié),以供大家參考!
高三數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
(1)(代數(shù)法)求方程的實(shí)數(shù)根;
(2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡。
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫出點(diǎn)M的集合;
⒊列出方程=0;
⒋化簡(jiǎn)方程為最簡(jiǎn)形式;
⒌檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高三數(shù)學(xué)必修四知識(shí)點(diǎn)歸納
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。
笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者-一來(lái)對(duì)應(yīng),開(kāi)創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說(shuō)待定系數(shù)法,實(shí)為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。
高三數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 高三數(shù)學(xué)上學(xué)期的必背知識(shí)點(diǎn)
★ 高三數(shù)學(xué)上冊(cè)必背知識(shí)點(diǎn)歸納
★ 高考數(shù)學(xué)必背知識(shí)點(diǎn)2020年
★ 高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及數(shù)學(xué)學(xué)習(xí)方法
★ 高三年級(jí)數(shù)學(xué)必背知識(shí)點(diǎn)小結(jié)
★ 高三數(shù)學(xué)期末知識(shí)點(diǎn)
★ 2020高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與答題套路