高三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合
2022高三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合
高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒(méi)有社會(huì)經(jīng)驗(yàn)的學(xué)生來(lái)說(shuō),無(wú)疑是個(gè)困難的想選擇。下面是小編給大家?guī)?lái)的高三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合,以供大家參考!
高三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合
軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的.點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
2.寫(xiě)出點(diǎn)M的集合;
3.列出方程=0;
4.化簡(jiǎn)方程為最簡(jiǎn)形式;
5.檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
1.直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5.交軌法:將兩動(dòng)曲線(xiàn)方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一般步驟:
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高三數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)歸納
第一部分集合
(1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;
(2)注意:討論的時(shí)候不要遺忘了的情況。
第二部分函數(shù)與導(dǎo)數(shù)
1、映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。
2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法
3、復(fù)合函數(shù)的有關(guān)問(wèn)題
(1)復(fù)合函數(shù)定義域求法:
①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出
②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。
(2)復(fù)合函數(shù)單調(diào)性的判定:
①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);
②分別研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;
③根據(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。
注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。
4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。
5、函數(shù)的奇偶性
⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件;
⑵是奇函數(shù);
⑶是偶函數(shù);
⑷奇函數(shù)在原點(diǎn)有定義,則;
⑸在關(guān)于原點(diǎn)對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;
(6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;
1、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);
2、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);
3、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱(chēng);
4、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對(duì)稱(chēng)。
5、函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))。
高三數(shù)學(xué)必修一知識(shí)點(diǎn)摘要
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。A(A
②真子集:如果A(B,且A(B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
③如果A(B,B(C,那么A(C
④如果A(B同時(shí)B(A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
高三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)整合相關(guān)文章:
★ 高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)
★ 高三數(shù)學(xué)考試必考的重要知識(shí)點(diǎn)歸納
★ 高三數(shù)學(xué)相關(guān)的知識(shí)點(diǎn)歸納
★ 高三數(shù)學(xué)知識(shí)點(diǎn)梳理匯總
★ 高三數(shù)學(xué)重要知識(shí)點(diǎn)
★ 高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)
★ 高三數(shù)學(xué)復(fù)習(xí)重要知識(shí)點(diǎn)