人教版高三數(shù)學(xué)必修四知識(shí)點(diǎn)
高三會(huì)教給我們奮斗,每個(gè)人都有無盡的潛力,每一個(gè)人都有無窮的提升空間,不經(jīng)過一年血戰(zhàn),也許我們永遠(yuǎn)發(fā)現(xiàn)不了自己身上蘊(yùn)藏的能量。所以高三注定是精彩的一頁(yè),下面小編就為大家分享了《人教版高三數(shù)學(xué)必修四知識(shí)點(diǎn)》,感謝您的閱讀和關(guān)注!
【篇一】
a(1)=a,a(n)為公差為r的等差數(shù)列
通項(xiàng)公式:
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用歸納法證明。
n=1時(shí),a(1)=a+(1-1)r=a。成立。
假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r
則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通項(xiàng)公式也成立。
因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
同樣,可用歸納法證明求和公式。
a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列
通項(xiàng)公式:
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用歸納法證明等比數(shù)列的通項(xiàng)公式。
求和公式:
S(n)=a(1)+a(2)+...+a(n)
=a+ar+...+ar^(n-1)
=a[1+r+...+r^(n-1)]
r不等于1時(shí),
S(n)=a[1-r^n]/[1-r]
r=1時(shí),
S(n)=na.
同樣,可用歸納法證明求和公式。
【篇二】
符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說,符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡.
軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫出點(diǎn)M的集合;
⒊列出方程=0;
⒋化簡(jiǎn)方程為最簡(jiǎn)形式;
⒌檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
人教版高三數(shù)學(xué)必修四知識(shí)點(diǎn)相關(guān)文章:
1.高三數(shù)學(xué)必修四知識(shí)點(diǎn)整理
2.高中數(shù)學(xué)必修四第一章知識(shí)點(diǎn)總結(jié)
5.高三數(shù)學(xué)必修一數(shù)學(xué)七大知識(shí)點(diǎn)
6.高三年級(jí)數(shù)學(xué)必背知識(shí)點(diǎn)
8.人教版高中數(shù)學(xué)知識(shí)點(diǎn)