高一數(shù)學(xué)補(bǔ)習(xí)知識(shí)點(diǎn)
人生當(dāng)自勉,學(xué)習(xí)需堅(jiān)持。從這一刻開始,我依舊是我,只是心境再不同。不論今后的路如何,我都會(huì)在心底默默鼓勵(lì)自己,堅(jiān)持不懈,等待那一場(chǎng)破繭的美麗。以下是小編給大家整理的高一數(shù)學(xué)知識(shí)點(diǎn),希望大家能夠喜歡!
高一數(shù)學(xué)補(bǔ)習(xí)知識(shí)點(diǎn)匯總
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={__2-1=0}B={-1,1}“元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
高一數(shù)學(xué)補(bǔ)習(xí)知識(shí)點(diǎn)整理
1.一些基本概念:
(1)向量:既有大小,又有方向的量.
(2)數(shù)量:只有大小,沒有方向的量.
(3)有向線段的三要素:起點(diǎn)、方向、長度.
(4)零向量:長度為0的向量.
(5)單位向量:長度等于1個(gè)單位的向量.
(6)平行向量(共線向量):方向相同或相反的非零向量.
※零向量與任一向量平行.
(7)相等向量:長度相等且方向相同的向量.
2.向量加法運(yùn)算:
⑴三角形法則的特點(diǎn):首尾相連.
⑵平行四邊形法則的特點(diǎn):共起點(diǎn)
高一數(shù)學(xué)補(bǔ)習(xí)知識(shí)點(diǎn)大全
定義:
_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線向上的方向、_軸的正方向;
(2)規(guī)定當(dāng)直線和_軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,體現(xiàn)了直線對(duì)_軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
a_+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當(dāng)a≠0時(shí),
傾斜角為90度,即與_軸垂直
高一數(shù)學(xué)補(bǔ)習(xí)知識(shí)點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(考前必看)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)小歸納
★ 高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納