亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 >

      高一數(shù)學??贾R點總結(jié)

      時間: 淑娟20 分享

      高一數(shù)學怎么學?抓住重點、關(guān)鍵去聽課,抓住開頭與結(jié)尾,它往往是重點與關(guān)鍵的綱。注意老師反復強調(diào)的。今天小編在這給大家整理了高一數(shù)學知識點總結(jié),接下來隨著小編一起來看看吧!

      高一數(shù)學知識點總結(jié)(一)

      常考知識點

      定義:

      x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。

      范圍:

      傾斜角的取值范圍是0°≤α<180°。

      理解:

      (1)注意“兩個方向”:直線向上的方向、x軸的正方向;

      (2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。

      意義:

      ①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

      ②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;

      ③傾斜角相同,未必表示同一條直線。

      公式:

      k=tanα

      k>0時α∈(0°,90°)

      k<0時α∈(90°,180°)

      k=0時α=0°

      當α=90°時k不存在

      ax+by+c=0(a≠0)傾斜角為A,

      則tanA=-a/b,

      A=arctan(-a/b)

      當a≠0時,

      傾斜角為90度,即與X軸垂直

      高一數(shù)學知識點總結(jié)(二)

      同角三角函數(shù)基本關(guān)系

      ⒈同角三角函數(shù)的基本關(guān)系式

      倒數(shù)關(guān)系:

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      商的關(guān)系:

      sinα/cosα=tanα=secα/cscα

      cosα/sinα=cotα=cscα/secα

      平方關(guān)系:

      sin^2(α)+cos^2(α)=1

      1+tan^2(α)=sec^2(α)

      1+cot^2(α)=csc^2(α)

      同角三角函數(shù)關(guān)系六角形記憶法

      六角形記憶法:(參看圖片或參考資料鏈接)

      構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

      (1)倒數(shù)關(guān)系:對角線上兩個函數(shù)互為倒數(shù);

      (2)商數(shù)關(guān)系:六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。

      (主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。

      (3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

      兩角和差公式

      ⒉兩角和與差的三角函數(shù)公式

      sin(α+β)=sinαcosβ+cosαsinβ

      sin(α-β)=sinαcosβ-cosαsinβ

      cos(α+β)=cosαcosβ-sinαsinβ

      cos(α-β)=cosαcosβ+sinαsinβ

      高一數(shù)學知識點總結(jié)(三)

      如果直線a與平面α平行,那么直線a與平面α內(nèi)的直線有哪些位置關(guān)系?

      平行或異面。

      若直線a與平面α平行,那么在平面α內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?

      無數(shù)條;平行。

      如果直線a與平面α平行,經(jīng)過直線a的平面β與平面α相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?

      平行;因為a∥α,所以a與α沒有公共點,則a與b沒有公共點,又a與b在同一平面β內(nèi),所以a與b平行。

      綜上分析,在直線a與平面α平行的條件下我們可以得到什么結(jié)論?

      如果一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

      高一數(shù)學知識點總結(jié)(四)

      空間幾何體的三視圖

      定義三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

      注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

      俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

      側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

      NO.3 空間幾何體的直觀圖——斜二測畫法

      斜二測畫法

      斜二測畫法特點

      ①原來與x軸平行的線段仍然與x平行且長度不變;

      ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

      直線與方程

      直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

      直線的斜率

      定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

      過兩點的直線的斜率公式:

      (注意下面四點)

      (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關(guān);

      (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

      高一數(shù)學知識點總結(jié)(五)

      1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解.

      2.在應(yīng)用條件時,易A忽略是空集的情況

      3.你會用補集的思想解決有關(guān)問題嗎?

      4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

      5.你知道“否命題”與“命題的否定形式”的區(qū)別.

      6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.

      7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.

      8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域.

      9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.

      10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法

      11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.

      12.求函數(shù)的值域必須先求函數(shù)的定義域。

      13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

      14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?

      (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

      15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

      16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。

      17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?

      18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.

      19.絕對值不等式的解法及其幾何意義是什么?

      20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

      21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

      22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.

      23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.

      24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

      25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。

      26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?

      27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

      28.應(yīng)用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學方法用來證明時也成立。

      29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

      30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

      31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

      32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

      33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是

      34.你還記得某些特殊角的三角函數(shù)值嗎?

      35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

      36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:

      (1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.

      (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.

      (3)點的平移公式:點按向量平移到點,則.

      37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)

      38.形如的周期都是,但的周期為。

      39.正弦定理時易忘比值還等于2R.


      高一數(shù)學??贾R點總結(jié)相關(guān)文章:

      高一數(shù)學知識點總結(jié)歸納

      高一數(shù)學考試反思5篇

      高一期末考試數(shù)學備考方法

      高一數(shù)學考試反思1500字

      高考狀元談數(shù)學學習方法,高一高二學生必看

      高一數(shù)學考試反思200字

      如何上好高中數(shù)學復習課

      最新的高考數(shù)學命題有哪些革新?高一高二早看早應(yīng)對

      高三復習計劃總結(jié)

      2017高一數(shù)學期中考試試卷答案

      474609