蘇教版初三數(shù)學(xué)知識(shí)點(diǎn)
想要學(xué)好數(shù)學(xué),首要任務(wù)就是要把所有的基本概念、公式、原理都背下來(lái),理解,掌握相應(yīng)的知識(shí)點(diǎn)。下面是小編給大家整理的蘇教版初三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
蘇教版初三數(shù)學(xué)知識(shí)點(diǎn)
一元一次方程:
①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是
1、這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:
去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
①用符號(hào)”=“號(hào)連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。
③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
初三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、銳角三角函數(shù)
正弦等于對(duì)邊比斜邊
余弦等于鄰邊比斜邊
正切等于對(duì)邊比鄰邊
余切等于鄰邊比對(duì)邊
正割等于斜邊比鄰邊
二、三角函數(shù)的計(jì)算
冪級(jí)數(shù)
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它們的各項(xiàng)都是正整數(shù)冪的冪函數(shù),其中c0,c1,c2,...cn...及a都是常數(shù),這種級(jí)數(shù)稱為冪級(jí)數(shù).
泰勒展開式(冪級(jí)數(shù)展開法)
f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...
三、解直角三角形
1.直角三角形兩個(gè)銳角互余。
2.直角三角形的三條高交點(diǎn)在一個(gè)頂點(diǎn)上。
3.勾股定理:兩直角邊平方和等于斜邊平方
四、利用三角函數(shù)測(cè)高
1、解直角三角形的應(yīng)用
(1)通過解直角三角形能解決實(shí)際問題中的很多有關(guān)測(cè)量問.
如:測(cè)不易直接測(cè)量的物體的高度、測(cè)河寬等,關(guān)鍵在于構(gòu)造出直角三角形,通過測(cè)量角的度數(shù)和測(cè)量邊的長(zhǎng)度,計(jì)算出所要求的物體的高度或長(zhǎng)度.
(2)解直角三角形的一般過程是:
①將實(shí)際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題).
②根據(jù)題目已知特點(diǎn)選用適當(dāng)銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學(xué)問題的答案,再轉(zhuǎn)化得到實(shí)際問題的答案.
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)梳理
一、圓的定義
1、以定點(diǎn)為圓心,定長(zhǎng)為半徑的點(diǎn)組成的圖形。
2、在同一平面內(nèi),到一個(gè)定點(diǎn)的距離都相等的點(diǎn)組成的圖形。
二、圓的各元素
1、半徑:圓上一點(diǎn)與圓心的連線段。
2、直徑:連接圓上兩點(diǎn)有經(jīng)過圓心的線段。
3、弦:連接圓上兩點(diǎn)線段(直徑也是弦)。
4、?。簣A上兩點(diǎn)之間的曲線部分。半圓周也是弧。
(1)劣?。盒∮诎雸A周的弧。
(2)優(yōu)?。捍笥诎雸A周的弧。
5、圓心角:以圓心為頂點(diǎn),半徑為角的邊。
6、圓周角:頂點(diǎn)在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長(zhǎng)。
三、圓的基本性質(zhì)
1、圓的對(duì)稱性
(1)圓是圖形,它的對(duì)稱軸是直徑所在的直線。
(2)圓是中心對(duì)稱圖形,它的對(duì)稱中心是圓心。
(3)圓是對(duì)稱圖形。
2、垂徑定理。
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對(duì)的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對(duì)的兩條弧。
平分弧的直徑,垂直平分弧所對(duì)的弦。
3、圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。圓周角的度數(shù)等于它所對(duì)弧度數(shù)的一半。
(1)同弧所對(duì)的圓周角相等。
(2)直徑所對(duì)的圓周角是直角;圓周角為直角,它所對(duì)的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對(duì)量中只要有一對(duì)量相等,其余四對(duì)量也分別相等。
5、夾在平行線間的兩條弧相等。
6、設(shè)⊙O的半徑為r,OP=d。
7、(1)過兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線段的中垂線上。
(2)不在同一直線上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。
(直角的外心就是斜邊的中點(diǎn)。)
8、直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個(gè)交點(diǎn),直線與圓相交;直線與圓只有一個(gè)交點(diǎn),直線與圓相切;
直線與圓沒有交點(diǎn),直線與圓相離。
9、中,A(x1,y1)、B(x2,y2)。
10、圓的切線判定。
(1)d=r時(shí),直線是圓的切線。
切點(diǎn)不明確:畫垂直,證半徑。
(2)經(jīng)過半徑的外端且與半徑垂直的直線是圓的切線。
切點(diǎn)明確:連半徑,證垂直。
11、圓的切線的性質(zhì)(補(bǔ)充)。
(1)經(jīng)過切點(diǎn)的直徑一定垂直于切線。
(2)經(jīng)過切點(diǎn)并且垂直于這條切線的直線一定經(jīng)過圓心。
12、切線長(zhǎng)定理。
(1)切線長(zhǎng):從圓外一點(diǎn)引圓的兩條切線,切點(diǎn)與這點(diǎn)之間連線段的長(zhǎng)叫這個(gè)點(diǎn)到圓的切線長(zhǎng)。
(2)切線長(zhǎng)定理。
∵PA、PB切⊙O于點(diǎn)A、B
∴PA=PB,∠1=∠2。
13、內(nèi)切圓及有關(guān)計(jì)算。
(1)內(nèi)切圓的圓心是三個(gè)內(nèi)角平分線的交點(diǎn),它到三邊的距離相等。
(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點(diǎn)D、E、F。
求:AD、BE、CF的長(zhǎng)。
分析:設(shè)AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求內(nèi)切圓的半徑r。
分析:先證得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
14、(1)弦切角:角的頂點(diǎn)在圓周上,角的一邊是圓的切線,另一邊是圓的弦。
BC切⊙O于點(diǎn)B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圓的兩條弦AB與CD相交于點(diǎn)P,則PA?PB=PC?PD。
(3)切割線定理。
如圖,PA切⊙O于點(diǎn)A,PBC是⊙O的割線,則PA2=PB?PC。
(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。
15、圓與圓的位置關(guān)系。
(1)外離:d>r1+r2,交點(diǎn)有0個(gè);
外切:d=r1+r2,交點(diǎn)有1個(gè);
相交:r1-r2
內(nèi)切:d=r1-r2,交點(diǎn)有1個(gè);
內(nèi)含:0≤d
(2)性質(zhì)。
相交兩圓的連心線垂直平分公共弦。
相切兩圓的連心線必經(jīng)過切點(diǎn)。
16、圓中有關(guān)量的計(jì)算。
(1)弧長(zhǎng)有L表示,圓心角用n表示,圓的半徑用R表示。
(2)扇形的面積用S表示。
(3)圓錐的側(cè)面展開圖是扇形。
r為底面圓的半徑,a為母線長(zhǎng)。
初三數(shù)學(xué)學(xué)習(xí)方法
一、該記的記,該背的背,不要以為理解了就行
有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語(yǔ)、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對(duì)了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運(yùn)算要不是背熟了“乘法九九表”,你能順利地進(jìn)行運(yùn)算嗎?盡管你理解了乘法是相同加數(shù)的和的運(yùn)算,但你在做9.9時(shí)用九個(gè)9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運(yùn)用大家熟記的法則做出來(lái)的。同時(shí),數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰(shuí)記住了這些游戲規(guī)則,誰(shuí)就能順利地做游戲;誰(shuí)違反了這些游戲規(guī)則,誰(shuí)就被判錯(cuò),罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個(gè)公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個(gè)公式,將會(huì)對(duì)今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會(huì)大量地用到這三個(gè)公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個(gè)因式分解公式就是由這三個(gè)乘法公式推出來(lái)的,二者是相反方向的變形。
對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
二、幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度.時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來(lái)。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來(lái)求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來(lái)分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
初三數(shù)學(xué)知識(shí)點(diǎn)歸納蘇教版相關(guān)文章:
★ 蘇教版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)整理
★ 九年級(jí)新學(xué)期數(shù)學(xué)知識(shí)點(diǎn)蘇教版
★ 七年級(jí)數(shù)學(xué)知識(shí)點(diǎn)蘇教版
★ 蘇教版初中三年級(jí)數(shù)學(xué)復(fù)習(xí)計(jì)劃