亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦>學(xué)習(xí)方法>各學(xué)科學(xué)習(xí)方法>數(shù)學(xué)學(xué)習(xí)方法>

      高考數(shù)學(xué)知識(shí)點(diǎn)及復(fù)習(xí)內(nèi)容

      時(shí)間: 舒淇4599 分享

      大家最不陌生的就是知識(shí)點(diǎn)吧,其實(shí)說(shuō)簡(jiǎn)單點(diǎn)知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習(xí)我能掌握”的內(nèi)容。下面小編為大家?guī)?lái)高考數(shù)學(xué)知識(shí)點(diǎn)及復(fù)習(xí)內(nèi)容,希望對(duì)您有所幫助!

      高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)

      三角函數(shù)。

      注意歸一公式、誘導(dǎo)公式的正確性。

      數(shù)列題。

      1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

      2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證;

      3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

      立體幾何題。

      1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

      2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

      3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

      概率問(wèn)題。

      1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

      2、搞清是什么概率模型,套用哪個(gè)公式;

      3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

      4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

      5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;

      6、注意放回抽樣,不放回抽樣;

      正弦、余弦典型例題。

      1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

      2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

      3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

      4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

      5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

      正弦、余弦解題訣竅。

      1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

      2、已知三邊,或兩邊及其夾角用余弦定理

      3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

      高考數(shù)學(xué)重要知識(shí)點(diǎn)

      1、課程內(nèi)容:

      必修課程由5個(gè)模塊組成:

      必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對(duì)、冪函數(shù))

      必修2:立體幾何初步、平面解析幾何初步。

      必修3:算法初步、統(tǒng)計(jì)、概率。

      必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

      必修5:解三角形、數(shù)列、不等式。

      以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。

      上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過(guò)程和實(shí)際應(yīng)用,而不在技巧與難度上做過(guò)高的要求。

      此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。

      2、重難點(diǎn)及考點(diǎn):

      重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

      難點(diǎn):函數(shù)、圓錐曲線

      高考相關(guān)考點(diǎn):

      ⑴集合與簡(jiǎn)易邏輯:集合的概念與運(yùn)算、簡(jiǎn)易邏輯、充要條件

      ⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、函數(shù)的應(yīng)用

      ⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

      ⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

      ⑸平面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

      ⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對(duì)值不等式、不等式的應(yīng)用

      ⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

      ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問(wèn)題、圓錐曲線的應(yīng)用

      ⑼直線、平面、簡(jiǎn)單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

      ⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

      ⑾概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

      ⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

      ⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

      高考數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)

      一、集合與函數(shù)

      1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

      2.在應(yīng)用條件時(shí),易A忽略是空集的情況

      3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?

      4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

      5.你知道“否命題”與“命題的否定形式”的區(qū)別。

      6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則。

      7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng)。

      8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。

      9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。

      10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法

      11. 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

      12.求函數(shù)的值域必須先求函數(shù)的定義域。

      13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎?

      14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

      (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

      15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

      16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

      17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

      二、不等式

      1.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

      2.絕對(duì)值不等式的解法及其幾何意義是什么?

      3.解分式不等式應(yīng)注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

      4.解含參數(shù)不等式的通法是“定義域?yàn)榍疤?,函?shù)的單調(diào)性為基礎(chǔ),分類(lèi)討論是關(guān)鍵”,注意解完之后要寫(xiě)上:“綜上,原不等式的解集是……”.

      5. 在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。

      6. 兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a

      三、數(shù)列

      1.解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

      2.在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

      3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在?

      4.數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

      5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。

      四、三角函數(shù)

      1.正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

      2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

      3. 在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

      4. 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)

      5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是

      6.你還記得某些特殊角的三角函數(shù)值嗎?

      7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫(xiě)三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫(xiě)簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書(shū)寫(xiě)規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎?

      五、平面向量

      1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒(méi)有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。

      2..數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:

      在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。

      已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒(méi)有。

      在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量。

      3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

      六、解析幾何

      1.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況?

      2.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。

      3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

      4. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?

      5. 對(duì)不重合的兩條直線

      (建議在解題時(shí),討論后利用斜率和截距)

      6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。

      7.解決線性規(guī)劃問(wèn)題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá)。(①設(shè)出變量,寫(xiě)出目標(biāo)函數(shù)②寫(xiě)出線性約束條件③畫(huà)出可行域④作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。)

      8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?

      9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問(wèn)題?

      10.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?

      11. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?)

      12. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱(chēng),存在性問(wèn)題都在下進(jìn)行).

      13.解析幾何問(wèn)題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?

      七、立體幾何

      1.你掌握了空間圖形在平面上的直觀畫(huà)法嗎?(斜二測(cè)畫(huà)法)。

      2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問(wèn)題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

      3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見(jiàn)

      4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過(guò)程跨步太大。

      5.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

      6.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。

      7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?

      8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">

      直線與平面所成的角的范圍:0o≤α≤90°

      1614614