初中數(shù)學因式分解教案
初中數(shù)學因式分解教案
因式分解是初中八年級數(shù)學中一個重要的知識點,老師在教學之前怎么準備教案呢?下面學習啦小編為你整理了初中數(shù)學因式分解的教案設計,希望對你有幫助。
初中數(shù)學因式分解教案設計
一、案例背景
現(xiàn)代教育理論認為,教師為主導,學生為主體,教師應當充分調(diào)動學生的學習積極性,使之主動地探索、研究,讓學生都參與到課堂活動中,通過學生自我感受,培養(yǎng)學生觀察、分析、歸納的能力,逐步提高自學能力,獨立思考的能力,發(fā)現(xiàn)問題和解決問題的能力,逐漸養(yǎng)成良好的個性品質(zhì)。
因式分解是代數(shù)式的一種重要恒等變形。它是學習分式的基礎,又在恒等變形、代數(shù)式的運算、解方程、函數(shù)中有廣泛的應用。
二、案例分析
教學過程設計
(一)『情境引入』
情境一:如何計算375×2.8+375×4.9+375×2.3 ?你是怎么想的?
問題:為什么375×2.8+375×4.9+375×2.3可以寫成375×(2.4+4.9+2.3)?依據(jù)是什么?
【評析】:(1)、復習舊知,加深記憶,同時為下面的學習作鋪墊。
(2)、學生對這樣的問題有興趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向變形,設置這樣的情境,由數(shù)推廣到式,效率較高。還為新課內(nèi)容的學習創(chuàng)設了良好的情緒和氛圍。
情境二:分析比較
把單項式乘多項式的乘法法則
a(b+c+d)=ab+ac+ad ①
反過來,就得到
ab+ac+ad =a(b+c+d)②
思考(1)你是怎樣認識①式和②式之間的關系的?
(2)②式左邊的多項式的每一項有相同的因式嗎?你能說出這個因式嗎?
【評析】:(1)、探索因式分解的方法,事實上是對整式乘法的再認識,因此,在教學過程中,教師要借助學生已有的整式乘法運算的基礎,給他們留下充分探索與交流的時間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程。
(2)、本題注重培養(yǎng)學生觀察、分析、歸納的能力,并向?qū)W生滲透對比、類比的數(shù)學思想方法。
(二)『探究因式分解』
1、認識公因式
(1)、【概念1】:多項式ab+ac+ad的各項ab、ac、ad都含有相同的因式a,稱為多項式各項的公因式。
(2)、議一議
下列多項式的各項是否有公因式?如果有,試找出公因式.
?、俣囗検絘2b+ab2的公因式是ab,…… 公因式是字母;
②多項式3x2-3y的公因式是3,…… 公因式是數(shù)字系數(shù);
?、鄱囗検?x2-6x3的公因式是3x2,……公因式是數(shù)學系數(shù)與字母的乘積。
分析并猜想
確定一個多項式的公因式時,要從 和 兩方面,分別進行考慮。
?、偃绾未_定公因式的數(shù)字系數(shù)?
?、谌绾未_定公因式的字母?字母的指數(shù)怎么定?
練一練:寫出下列多項式各項的公因式
(1)8x-16 (2)2a2b-ab2
(3)4x2-2x (4)6m2n-4m3n3-2mn
【評析】:(1)、教師不要直接給出找多項式公因式的方法和解釋,而是鼓勵學生自主探索,根據(jù)自己的體驗來積累找公因式的方法和經(jīng)驗,并能通過相互間的交流來糾正解題中的常見錯誤。
(2)、對公因式的理解是因式分解的基礎,所以在解決這個問題時要注意配以練習,特別是多次方及系數(shù)的公因式,要讓學生注意。
(3)、找公因式的一般步驟可歸納為:一看系數(shù) 二看字母 三看指數(shù)。
2、認識因式分解
【概念2】:把一個多項式化成幾個整式積的形式的叫做把這個多項式因式分解。
(課本)P71練一練第1題
(1)、下列各式由左邊到右邊的變形,哪些是因式分解,哪些不是?
?、? ab+ac+d=a(b+c)+d
?、? a2-1=(a+1)(a-1)
?、?(a+1)(a-1)= a2-1
(2)、你認為提公因式法分解因式和單項式乘多項式這兩種變形是怎樣的關系?從中你得到什么啟發(fā)?
【評析】:(1)、本題主要是為了加深學生對因式分解概念的理解,使學生清楚因式分解的結(jié)果應是整式乘積的形式。
(2)、教師安排本題意圖就是引導學生進行分析討論,鼓勵學生勤于思考,各抒己見,培養(yǎng)學生的邏輯思維能力和表達、交流能力。讓學生在主動學習中掌握了因式分解是整式乘法的互逆的過程,以及理解利用它們之間的關系進行因式分解的這種思想,從而降低了本節(jié)課的難點。
(三)『例題研究』
例1:把下列各式分解因式
(1)6a3b-9a2b2c (2)-2m3+8m2-12m
解:(1)6a3b-9a2b2c
=3a2b·2a-3a2b·3bc(找公因式,把各項分成公因式與一個單項式的乘積的形式)
=3a2b(2a-3bc)(提取公因式)
(2)-2m3+8m2-12m
=-(2m·m2-2m·4m+2m·6)(首項符號為負,先將多項式放在帶負號的括號內(nèi),注意放入括號中各項符號的變化。)
=-2m(m2-4m+6)(提取公因式)
【評析】:(1)、因式分解的概念和意義需要學生多層次的感受,教師不要期望一次透徹的講解和分析就能讓學生完全掌握。這時先讓學生進行初步的感受,再通過不同形式的練習增強對概念的理解例。
(2)、教師在講解例題時,應鼓勵學生自己動手找公因式,讓學生通過動手動腦、實際操作,教師可在下面收集錯誤,再加以點評,加深對因式分解方法的理解。
(3)、教學中教師不能簡單地要求學生記憶運算法則,更要重視學生對算理的理解,讓學生嘗試說出每一步運算的道理,有意識地培養(yǎng)學生有條理地思考和語言表達能力。
本題的易錯點:
(1)、漏項:提公因式后括號中的項數(shù)應與原多項式的項數(shù)一樣,這樣可檢查是否漏項。
(2)、符號:由于添括號法則在上學期沒有涉及,所以有必要在此處強調(diào),添括號法則:括號前面是“+”號,括到括號里的各項都不變號;括號前面是“-”號,括到括號里的各項都要變號。
(四)『鞏固練習』
練一練:辨別下列因式分解的正誤
(1)8a3b2-12ab4+4ab=4ab(2a2b-3b3)
(2)4x2-12x3=2x2(2-6x)
(3)a3-a2=a2(a-1)= a3-a2
解(1)錯誤,分解因式后,括號內(nèi)的多項式的項數(shù)漏掉了一項。
(2)錯誤,分解因式后,括號內(nèi)的多項式中仍有公因式。
(3)錯誤, 分解因式后,又返回到了整式的乘法。
【評析】:(1)、這些多是學生易錯的,本題設置的目的是讓學生運用例1的成果準確辨別因式分解中的常見錯誤,對因式分解的認識更加清晰。本例仍采用小組討論、交流的方式,讓學生都參與到課堂活動中。
(2)、當多項式的某一項恰好是公因式時,這一項應看成它與1的乘積,提公因式后剩下的應是1。1作為項的系數(shù)通??墒÷裕绻麊为毘梢豁棔r,它在因式分解時不能漏項。
(3)、進行多項式分解因式時,必須把每一個因式都分解到不能分解為止。
(4)、教師安排這一過程,完全放手讓學生自主進行,充分暴露學生的思維過程,展現(xiàn)學生生動活潑、主動求知和富有的個性,使學生真正成為學習的主體,使因式分解與整式的乘法的關系得到真正強化,也分散了本節(jié)課的難點。
(五)『想一想』:
如何把多項式3a(x+y)-2b(x+y)分解因式?
解:3a(x+y)-2b(x+y)= (x+y)(3a-2b)
評析:公因式(x+y)是多項式,屬較高要求,當多項式中有相同的整體(多項式)時,不要把它拆開,提取公因式時把它整體提出來,有時還需要做適當變形,如:(2-a)=-(a-2),教學時可初步滲透換元思想,將換元思想引入因式分解,可使問題化繁為簡。
【概念3】把多項式化成公因式與另一個多項式的積的形式,這種分解因式的方法叫做提公因式法。
初中數(shù)學因式分解教學反思
1、本節(jié)課根據(jù)學生的知識結(jié)構(gòu),采用的教學流程是:提出問題—實際操作—歸納方法—課堂練習—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生進一步發(fā)展觀察、歸納、類比、概括、逆向思考等能力,發(fā)展有條理思考及語言表達能力;
2、分解因式是一種變形,變形的結(jié)果應是整式的積的形式,分解因式與整式的乘法是互逆關系,即把分解因式看作是一個變形的過程,那么整式乘法又是分解因式的逆過程,這種互逆關系一方面體現(xiàn)二者之間的密切聯(lián)系,另一方面又說明了二者之間的根本區(qū)別。探索因式分解的方法,事實上是對整式乘法的再認識,因此,在教學過程中,教師要借助學生已有的整式乘法運算的基礎,給學生提供豐富有趣的問題情境,并給他們留下充分探索與交流的時間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程;
3、在提公因式方面,學生對公因式的認識不足,對提公因式的要求不清楚,造成了學生在做分解因式時出現(xiàn)了以下錯誤:(1)公因式找錯;(2)公因式找不完整(如:漏掉公因式的系數(shù)(或系數(shù)不是取各項系數(shù)的最大公約數(shù))、公因式中含有多項式時,漏掉系數(shù)或字母因數(shù)),導致因式分解不徹底;
4、由于在七年級上冊教材中沒有涉及添括號法則,所以學生在分解第一項系數(shù)是負數(shù)的多項式時,出現(xiàn)了很多符號錯誤;
因式分解是一個重點,也是一個難點,以上存在問題在以后的教學中有待進一步加強。
猜你感興趣: