亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考科目>中考數(shù)學(xué)>

      2017遼寧鞍山中考數(shù)學(xué)模擬試題(2)

      時間: 漫柔41 分享

        2017遼寧鞍山中考數(shù)學(xué)模擬真題答案

        一、選擇題(本大題共14小題,每小題3分,共42分)在每小題所給出的四個選項中,只有一項是符合題目要求的

        1.+(﹣3)的相反數(shù)是(  )

        A.﹣(+3) B.﹣3 C.3 D.

        【考點(diǎn)】相反數(shù).

        【分析】求出式子的值,再求出其相反數(shù)即可.

        【解答】解:+(﹣3)=﹣3,

        ﹣3的相反數(shù)是3.

        故選:C.

        2.桂林是世界著名的風(fēng)景旅游城市和歷史文化名城,地處南嶺山系西南部,廣西東北部,行政區(qū)域總面積27 809平方公里.將27 809用科學(xué)記數(shù)法表示應(yīng)為(  )

        A.0.278 09×105 B.27.809×103 C.2.780 9×103 D.2.780 9×104

        【考點(diǎn)】科學(xué)記數(shù)法—表示較大的數(shù).

        【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).

        【解答】解:27 809=2.780 9×104.故選D.

        3.如圖,AB∥ED,AG平分∠BAC,∠ECF=70°,則∠FAG的度數(shù)是(  )

        A.155° B.145° C.110° D.35°

        【考點(diǎn)】平行線的性質(zhì).

        【分析】首先,由平行線的性質(zhì)得到∠BAC=∠ECF=70°;然后利用鄰補(bǔ)角的定義、角平分線的定義來求∠FAG的度數(shù).

        【解答】解:如圖,∵AB∥ED,∠ECF=70°,

        ∴∠BAC=∠ECF=70°,

        ∴∠FAB=180°﹣∠BAC=110°.

        又∵AG平分∠BAC,

        ∴∠BAG= ∠BAC=35°,

        ∴∠FAG=∠FAB+∠BAG=145°.

        故選:B.

        4.下列式子中,正確的是(  )

        A.a5n÷an=a5 B.(﹣a2)3•a6=a12 C.a8n•a8n=2a8n D.(﹣m)(﹣m)4=﹣m5

        【考點(diǎn)】同底數(shù)冪的除法;同底數(shù)冪的乘法;冪的乘方與積的乘方.

        【分析】根據(jù)同底數(shù)冪的除法法則對A進(jìn)行判斷;根據(jù)冪的乘方和同底數(shù)冪的乘法對B進(jìn)行判斷;根據(jù)同底數(shù)冪的乘法法則對C、D進(jìn)行判斷.

        【解答】解:A、a5n÷an=a4n,所以A選項錯誤;

        B、(﹣a2)3•a6=﹣a12,所以B選項錯誤;

        C、a8n•a8n=a16n,所以C選項錯誤;

        D、(﹣m)(﹣m)4=﹣m•m4=﹣m5,所以D選項正確.

        故選D.

        5.不等式組 的解集是(  )

        A.x≥8 B.3

        【考點(diǎn)】解一元一次不等式組.

        【分析】分別求出各不等式的解集,再求出其公共解集即可.

        【解答】解: ,

        由①得,x≤8,

        由②得,x>3,

        故此不等式組的解集為:3

        故答案為:3

        6.若x2+x﹣2=0,則 的值為(  )

        A. B. C.2 D.﹣

        【考點(diǎn)】分式的化簡求值.

        【分析】先根據(jù)題意求出x2+x的值,再代入所求代數(shù)式進(jìn)行計算即可.

        【解答】解:∵x2+x﹣2=0,

        ∴x2+x=2,

        ∴原式=2﹣ = .

        故選A.

        7.如圖是某幾何體的三視圖,則該幾何體的表面積為(  )

        A.24+12 B.16+12 C.24+6 D.16+6

        【考點(diǎn)】由三視圖判斷幾何體.

        【分析】首先確定該幾何體的形狀,然后根據(jù)各部分的尺寸得到該幾何體的表面積即可.

        【解答】解:觀察該幾何體的三視圖發(fā)現(xiàn)該幾何體為正六棱柱;

        該六棱柱的棱長為2,正六邊形的半徑為2,

        所以表面積為2×2×6+ ×2× ×6×2=24+12 ,

        故選:A.

        8.袋子里有4個球,標(biāo)有2,3,4,5,先抽取一個并記住,放回,然后再抽取一個,所抽取的兩個球數(shù)字之和大于6的概率是(  )

        A. B. C. D.

        【考點(diǎn)】列表法與樹狀圖法.

        【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與抽取的兩個球數(shù)字之和大于6的情況,再利用概率公式即可求得答案.

        【解答】解:畫樹狀圖得:

        ∵共有16種等可能的結(jié)果,抽取的兩個球數(shù)字之和大于6的有10種情況,

        ∴抽取的兩個球數(shù)字之和大于6的概率是: = .

        故選:C.

        9.正方形ABCD中,P、Q分別為BC、CD的中點(diǎn),若∠PAQ=40°,則∠CPQ大小為(  )

        A.50° B.60° C.45° D.70°

        【考點(diǎn)】正方形的性質(zhì).

        【分析】根據(jù)正方形的性質(zhì)得到CP=CQ,從而得到答案.

        【解答】解:∵四邊形ABCD為正方形,

        ∴BA=DA=BC=CD,

        ∵P、Q分別為BC、CD的中點(diǎn),

        ∴DQ=BP,

        ∴CP=CQ,

        ∵∠C=90°,

        ∴∠CPQ=45°,

        故選C.

        10.如圖,⊙O的直徑CD垂直弦AB于點(diǎn)E,且CE=2,DE=8,則AB的長為(  )

        A.2 B.4 C.6 D.8

        【考點(diǎn)】垂徑定理;勾股定理.

        【分析】根據(jù)CE=2,DE=8,得出半徑為5,在直角三角形OBE中,由勾股定理得BE,根據(jù)垂徑定理得出AB的長.

        【解答】解:∵CE=2,DE=8,

        ∴OB=5,

        ∴OE=3,

        ∵AB⊥CD,

        ∴在△OBE中,得BE=4,

        ∴AB=2BE=8.

        故選:D.

        11.用配方法解方程3x2﹣6x+1=0,則方程可變形為(  )

        A.(x﹣3)2= B.3(x﹣1)2= C.(x﹣1)2= D.(3x﹣1)2=1

        【考點(diǎn)】解一元二次方程﹣配方法.

        【分析】方程二次項系數(shù)化為1,常數(shù)項移到右邊,兩邊加上一次項系數(shù)一半的平方,變形即可得到結(jié)果.

        【解答】解:方程變形得:x2﹣2x=﹣ ,

        配方得:x2﹣2x+1= ,即(x﹣1)2= ,

        故選C.

        12.用若干張大小相同的黑白兩種顏色的正方形紙片,按下列拼圖的規(guī)律拼成一列圖案,則第6個圖案中黑色正方形紙片的張數(shù)是(  )

        A.22 B.21 C.20 D.19

        【考點(diǎn)】規(guī)律型:圖形的變化類.

        【分析】觀察圖形,發(fā)現(xiàn):黑色紙片在4的基礎(chǔ)上,依次多3個;根據(jù)其中的規(guī)律,用字母表示即可.

        【解答】解:第個圖案中有黑色紙片3×1+1=4張

        第2個圖案中有黑色紙片3×2+1=7張,

        第3圖案中有黑色紙片3×3+1=10張,

        …

        第n個圖案中有黑色紙片=3n+1張.

        當(dāng)n=6時,3n+1=3×6+1=19

        故選D.

        13.一副三角板按圖1所示的位置擺放.將△DEF繞點(diǎn)A(F)逆時針旋轉(zhuǎn)60°后(圖2),測得CG=10cm,則兩個三角形重疊(陰影)部分的面積為(  )

        A.75cm2 B.(25+25 )cm2 C.(25+ )cm2 D.(25+ )cm2

        【考點(diǎn)】解直角三角形;旋轉(zhuǎn)的性質(zhì).

        【分析】過G點(diǎn)作GH⊥AC于H,則∠GAC=60°,∠GCA=45°,GC=10cm,先在Rt△GCH中根據(jù)等腰直角三角形三邊的關(guān)系得到GH與CH的值,然后在Rt△AGH中根據(jù)含30°的直角三角形三邊的關(guān)系求得AH,最后利用三角形的面積公式進(jìn)行計算即可.

        【解答】解:過G點(diǎn)作GH⊥AC于H,如圖,

        ∠GAC=60°,∠GCA=45°,GC=10cm,

        在Rt△GCH中,GH=CH= GC=5 cm,

        在Rt△AGH中,AH= GH= cm,

        ∴AC=(5 + )cm,

        ∴兩個三角形重疊(陰影)部分的面積= •GH•AC

        = ×5 ×(5 + )

        =(25+ )cm2.

        故選:C.

        14.世界文化遺產(chǎn)“華安二宜樓”是一座圓形的土樓,如圖,小王從南門點(diǎn)A沿AO勻速直達(dá)土樓中心古井點(diǎn)O處,停留拍照后,從點(diǎn)O沿OB也勻速走到點(diǎn)B,緊接著沿 回到南門,下面可以近似地刻畫小王與土樓中心O的距離s隨時間t變化的圖象是(  )

        A. B. C. D.

        【考點(diǎn)】動點(diǎn)問題的函數(shù)圖象.

        【分析】從A→O的過程中,s隨t的增大而減小;直至s=0;從O→B的過程中,s隨t的增大而增大;從B沿 回到A,s不變.

        【解答】解:如圖所示,當(dāng)小王從A到古井點(diǎn)O的過程中,s是t的一次函數(shù),s隨t的增大而減小;

        當(dāng)停留拍照時,t增大但s=0;

        當(dāng)小王從古井點(diǎn)O到點(diǎn)B的過程中,s是t的一次函數(shù),s隨t的增大而增大.

        當(dāng)小王 回到南門A的過程中,s等于半徑,保持不變.

        綜上所述,只有C符合題意.

        故選:C.

        二、填空題(本大題共5小題,每小題3分,共15分)

        15.分解因式:x3﹣6x2+9x= x(x﹣3)2 .

        【考點(diǎn)】提公因式法與公式法的綜合運(yùn)用.

        【分析】先提取公因式x,再對余下的多項式利用完全平方公式繼續(xù)分解.

        【解答】解:x3﹣6x2+9x,

        =x(x2﹣6x+9),

        =x(x﹣3)2.

        故答案為:x(x﹣3)2.

        16.某小組10個人在一次數(shù)學(xué)小測試中,有3個人的平均成績?yōu)?6,其余7個人的平均成績?yōu)?6,則這個小組的本次測試的平均成績?yōu)椤?9 .

        【考點(diǎn)】加權(quán)平均數(shù).

        【分析】先求出總成績,再運(yùn)用求平均數(shù)公式: 即可求出平均成績.

        【解答】解:∵有3個人的平均成績?yōu)?6,其余7個人的平均成績?yōu)?6,

        ∴這個小組的本次測試的總成績?yōu)椋?×96+7×86=890,

        ∴這個小組的本次測試的平均成績?yōu)椋?=89.

        故填89.

        17.現(xiàn)定義運(yùn)算“★”,對于任意實(shí)數(shù)a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,則實(shí)數(shù)x的值是 ﹣1或4 .

        【考點(diǎn)】解一元二次方程﹣因式分解法.

        【分析】根據(jù)題中的新定義將所求式子轉(zhuǎn)化為一元二次方程,求出一元二次方程的解即可得到x的值.

        【解答】解:根據(jù)題中的新定義將x★2=6變形得:

        x2﹣3x+2=6,即x2﹣3x﹣4=0,

        因式分解得:(x﹣4)(x+1)=0,

        解得:x1=4,x2=﹣1,

        則實(shí)數(shù)x的值是﹣1或4.

        故答案為:﹣1或4

        18.如圖,在△ABC中,AB=2,AC=4,將△ABC繞點(diǎn)C按逆時針方向旋轉(zhuǎn)得到△A′B′C,使CB′∥AB,分別延長AB、CA′相交于點(diǎn)D,則線段BD的長為 6 .

        【考點(diǎn)】旋轉(zhuǎn)的性質(zhì);相似三角形的判定與性質(zhì).

        【分析】利用平行線的性質(zhì)以及旋轉(zhuǎn)的性質(zhì)得出△CAD∽△B′A′C,再利用相似三角形的性質(zhì)得出AD的長,進(jìn)而得出BD的長.

        【解答】解:∵將△ABC繞點(diǎn)C按逆時針方向旋轉(zhuǎn)得到△A′B′C,

        ∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,

        ∵CB′∥AB,

        ∴∠B′CA′=∠D,

        ∴△CAD∽△B′A′C,

        ∴ = ,

        ∴ = ,

        解得AD=8,

        ∴BD=AD﹣AB=8﹣2=6.

        故答案為:6.

        19.如圖,在正方形ABCD中,AC為對角線,點(diǎn)E在AB邊上,EF⊥AC于點(diǎn)F,連接EC,AF=3,△EFC的周長為12,則EC的長為 5 .

        【考點(diǎn)】正方形的性質(zhì);勾股定理;等腰直角三角形.

        【分析】由四邊形ABCD是正方形,AC為對角線,得出∠EAF=45°,又因為EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周長為12,得出線段FC=12﹣3﹣EC=9﹣EC,在Rt△EFC中,運(yùn)用勾股定理EC2=EF2+FC2,求出EC=5.

        【解答】解:∵四邊形ABCD是正方形,AC為對角線,

        ∴∠EAF=45°,

        又∵EF⊥AC,

        ∴∠AFE=90°,∠AEF=45°,

        ∴EF=AF=3,

        ∵△EFC的周長為12,

        ∴FC=12﹣3﹣EC=9﹣EC,

        在Rt△EFC中,EC2=EF2+FC2,

        ∴EC2=9+(9﹣EC)2,

        解得EC=5.

        故答案為:5.

        三、解答題(本大題共7小題,共63分)

        20.小馬自駕私家車從A地到B地,駕駛原來的燃油汽車所需的油費(fèi)108元,駕駛新購買的純電動汽車所需電費(fèi)27元.已知行駛1千米,原來燃油汽車所需的油費(fèi)比新購買的純電動汽車所需的電費(fèi)多0.54元,求新購買的純電動汽車每行駛1千米所需的電費(fèi).

        【考點(diǎn)】分式方程的應(yīng)用.

        【分析】設(shè)新購買的純電動汽車每行駛1千米所需的電費(fèi)x元,根據(jù)行駛路程相等列出方程即可解決問題.

        【解答】解:設(shè)新購買的純電動汽車每行駛1千米所需的電費(fèi)x元

        根據(jù)題意: = ,

        解得:x=0.18,

        經(jīng)檢驗:x=0.18是原方程的解,

        答:新購買的純電動汽車每行駛1千米所需的電費(fèi)是0.18元..

        21.已知一個正比例函數(shù)的圖象與反比例函數(shù) 的圖象都經(jīng)過點(diǎn)A(m,﹣3).求這個正比例函數(shù)的解析式.

        【考點(diǎn)】反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.

        【分析】由兩函數(shù)交點(diǎn)為A點(diǎn),將A坐標(biāo)代入反比例函數(shù)解析式中求出m的值,確定出A的坐標(biāo),設(shè)正比例解析式為y=kx,將A的坐標(biāo)代入求出k的值,即可確定出正比例解析式.

        【解答】解:∵A為正比例與反比例函數(shù)圖象的交點(diǎn),

        ∴將x=m,y=﹣3代入反比例函數(shù)得:﹣3= ,即m=﹣3,

        ∴A(﹣3,﹣3),

        設(shè)正比例函數(shù)為y=kx,

        將x=﹣3,y=﹣3代入得:﹣3=﹣3k,即k=1,

        則正比例解析式為y=x.

        22.“中國夢”是中華民族每一個人的夢,也是每一個中小學(xué)生的夢,各中小學(xué)開展經(jīng)典誦讀活動,無疑是“中國夢”教育這一宏大樂章里的響亮音符,學(xué)校在經(jīng)典誦讀活動中,對全校學(xué)生用A、B、C、D四個等級進(jìn)行評價,現(xiàn)從中抽取若干個學(xué)生進(jìn)行調(diào)查,繪制出了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

        (1)共抽取了多少個學(xué)生進(jìn)行調(diào)查?

        (2)將圖甲中的折線統(tǒng)計圖補(bǔ)充完整.

        (3)求出圖乙中B等級所占圓心角的度數(shù).

        【考點(diǎn)】折線統(tǒng)計圖;扇形統(tǒng)計圖.

        【分析】(1)用C等級的人數(shù)除以C等級所占的百分比即可得到抽取的總?cè)藬?shù);

        (2)先用總數(shù)50分別減去A、C、D等級的人數(shù)得到B等級的人數(shù),然后畫出折線統(tǒng)計圖;

        (3)用360°乘以B等級所占的百分比即可得到B等級所占圓心角的度數(shù).

        【解答】解:(1)10÷20%=50,

        所以抽取了50個學(xué)生進(jìn)行調(diào)查;

        (2)B等級的人數(shù)=50﹣15﹣10﹣5=20(人),

        畫折線統(tǒng)計圖;

        (3)圖乙中B等級所占圓心角的度數(shù)=360°× =144°.

        23.某辦公用品銷售商店推出兩種優(yōu)惠方法:①購1個書包,贈送1支水性筆;②購書包和水性筆一律按9折優(yōu)惠.書包每個定價20元,水性筆每支定價5元.小麗和同學(xué)需買4個書包,水性筆若干支(不少于4支).www-2-1-cnjy-com

        (1)分別寫出兩種優(yōu)惠方法購買費(fèi)用y(元)與所買水性筆支數(shù)x(支)之間的函數(shù)關(guān)系式;

        (2)對x的取值情況進(jìn)行分析,說明按哪種優(yōu)惠方法購買比較便宜;

        (3)小麗和同學(xué)需買這種書包4個和水性筆12支,請你設(shè)計怎樣購買最經(jīng)濟(jì).

        【考點(diǎn)】一次函數(shù)的應(yīng)用.

        【分析】(1)由于①購1個書包,贈送1支水性筆,而需買4個書包,由此得到還要買(x﹣4)支水性筆,

        所以得到y(tǒng)1=(x﹣4)×5+20×4;又購書包和水性筆一律按9折優(yōu)惠,所以得到y(tǒng)2=(5x+20×4)×0.9;2-1-c-n-j-y

        (2)設(shè)y1>y2,求出當(dāng)x>24時選擇2優(yōu)惠;當(dāng)4≤x≤24時,選擇1優(yōu)惠.

        (3)采取用優(yōu)惠方法①購買4個書包,再用優(yōu)惠方法②購買8支水性筆即可.

        【解答】解:(1)設(shè)按優(yōu)惠方法①購買需用y1元,按優(yōu)惠方法②購買需用y2元

        y1=(x﹣4)×5+20×4=5x+60,

        y2=(5x+20×4)×0.9=4.5x+72.

        (2)解:分為三種情況:①∵設(shè)y1=y2,

        5x+60=4.5x+72,

        解得:x=24,

        ∴當(dāng)x=24時,選擇優(yōu)惠方法①,②均可;

       ?、凇咴O(shè)y1>y2,即5x+60>4.5x+72,

        ∴x>24.當(dāng)x>24整數(shù)時,選擇優(yōu)惠方法②;

       ?、郛?dāng)設(shè)y1

        ∴x<24

        ∴當(dāng)4≤x<24時,選擇優(yōu)惠方法①.

        (3)解:采用的購買方式是:用優(yōu)惠方法①購買4個書包,

        需要4×20=80元,同時獲贈4支水性筆;

        用優(yōu)惠方法②購買8支水性筆,需要8×5×90%=36元.

        共需80+36=116元.

        ∴最佳購買方案是:用優(yōu)惠方法①購買4個書包,獲贈4支水性筆;再用優(yōu)惠方法②購買8支水性筆.

        24.如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.

        (1)求證:EF是⊙O切線;

        (2)若AB=15,EF=10,求AE的長.

        【考點(diǎn)】切線的判定.

        【分析】(1)要證EF是⊙O的切線,只要連接OE,再證∠FEO=90°即可;

        (2)證明△FEA∽△FBA,得出AE,BF的比例關(guān)系式,勾股定理得出AE,BF的關(guān)系式,求出AE的長.

        【解答】(1)證明:連接OE,

        ∵∠B的平分線BE交AC于D,

        ∴∠CBE=∠ABE.

        ∵EF∥AC,

        ∴∠CAE=∠FEA.

        ∵∠OBE=∠OEB,∠CBE=∠CAE,

        ∴∠FEA=∠OEB.

        ∵∠AEB=90°,

        ∴∠FEO=90°.

        ∴EF是⊙O切線.

        (2)解:∵AF•FB=EF•EF,

        ∴AF×(AF+15)=10×10.

        ∴AF=5.

        ∴FB=20.

        ∵∠F=∠F,∠FEA=∠FBE,

        ∴△FEA∽△FBE.

        ∴EF=10

        ∵AE2+BE2=15×15.

        ∴AE=3 .

        25.(1)問題背景

        如圖1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分線交直線AC于D,過點(diǎn)C作CE⊥BD,交直線BD于E.請?zhí)骄烤€段BD與CE的數(shù)量關(guān)系.(事實(shí)上,我們可以延長CE與直線BA相交,通過三角形的全等等知識解決問題.)

        結(jié)論:線段BD與CE的數(shù)量關(guān)系是 BD=2CE (請直接寫出結(jié)論);

        (2)類比探索

        在(1)中,如果把BD改為∠ABC的外角∠ABF的平分線,其他條件均不變(如圖2),(1)中的結(jié)論還成立嗎?若成立,請寫出證明過程;若不成立,請說明理由;

        (3)拓展延伸

        在(2)中,如果AB≠AC,且AB=nAC(0

        結(jié)論:BD= 2n CE(用含n的代數(shù)式表示).

        【考點(diǎn)】相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);等腰直角三角形.

        【分析】(1)延長CE、BA交于F點(diǎn),先證明△BFC是等腰三角形,再根據(jù)等腰三角形的性質(zhì)可得CF=2CE,然后證明△ADB≌△AFC可得BD=FC,進(jìn)而證出BD=2CE;

        (2)延長CE、AB交于點(diǎn)G,先利用ASA證明△GBE≌△CBE,得出GE=CE,則CG=2CE,再證明△DAB∽△GAC,根據(jù)相似三角形對應(yīng)邊的比相等及AB=AC即可得出BD=CG=2CE;

        (3)同(2),延長CE、AB交于點(diǎn)G,先利用ASA證明△GBE≌△CBE,得出GE=CE,則CG=2CE,再證明△DAB∽△GAC,根據(jù)相似三角形對應(yīng)邊的比相等及AB=nAC即可得出BD=CG=2nCE.

        【解答】解:(1)BD=2CE.理由如下:

        如圖1,延長CE、BA交于F點(diǎn).

        ∵CE⊥BD,交直線BD于E,

        ∴∠FEB=∠CEB=90°.

        ∵BD平分∠ABC,

        ∴∠1=∠2,

        ∴∠F=∠BCF,

        ∴BF=BC,

        ∵BE⊥CF,

        ∴CF=2CE.

        ∵△ABC中,AC=AB,∠A=90°,

        ∴∠CBA=45°,

        ∴∠F=°÷2=67.5°,∠FBE=22.5°,

        ∴∠ADB=67.5°,

        ∵在△ADB和△AFC中,

        ,

        ∴△ADB≌△AFC(AAS),

        ∴BD=CF,

        ∴BD=2CE;

        (2)結(jié)論BD=2CE仍然成立.理由如下:

        如圖2,延長CE、AB交于點(diǎn)G.

        ∵∠1=∠2,∠1=∠3,∠2=∠4,

        ∴∠3=∠4,

        又∵BE=BE,∠GEB=∠CEB=90°,

        ∴△GBE≌△CBE(ASA),

        ∴GE=CE,

        ∴CG=2CE.

        ∵∠D+∠DCG=∠G+∠DCG=90°,

        ∴∠D=∠G,

        又∵∠DAB=∠GAC=90°,

        ∴△DAB∽△GAC,

        ∴ = ,

        ∵AB=AC,

        ∴BD=CG=2CE;

        (3)BD=2nCE.理由如下:

        如圖3,延長CE、AB交于點(diǎn)G.

        ∵∠1=∠2,∠1=∠3,∠2=∠4,

        ∴∠3=∠4,

        又∵BE=BE,∠GEB=∠CEB=90°,

        ∴△GBE≌△CBE(ASA),

        ∴GE=CE,

        ∴CG=2CE.

        ∵∠D+∠DCG=∠G+∠DCG=90°,

        ∴∠D=∠G,

        又∵∠DAB=∠GAC=90°,

        ∴△DAB∽△GAC,

        ∴ = ,

        ∵AB=nAC,

        ∴BD=nCG=2nCE.

        故答案為BD=2CE;2n.

        26.如圖,經(jīng)過點(diǎn)A(0,﹣4)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0),C兩點(diǎn),O為坐標(biāo)原點(diǎn).

        (1)求拋物線的解析式;

        (2)將拋物線y= x2+bx+c向上平移 個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;

        (3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

        【考點(diǎn)】二次函數(shù)綜合題.

        【分析】(1)該拋物線的解析式中只有兩個待定系數(shù),只需將A、B兩點(diǎn)坐標(biāo)代入即可得解.

        (2)首先根據(jù)平移條件表示出移動后的函數(shù)解析式,進(jìn)而用m表示出該函數(shù)的頂點(diǎn)坐標(biāo),將其代入直線AB、AC的解析式中,即可確定P在△ABC內(nèi)時m的取值范圍.

        (3)先在OA上取點(diǎn)N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,顯然在y軸的正負(fù)半軸上都有一個符合條件的M點(diǎn);以y軸正半軸上的點(diǎn)M為例,先證△ABN、△AMB相似,然后通過相關(guān)比例線段求出AM的長.

        【解答】解:(1)將A(0,﹣4)、B(﹣2,0)代入拋物線y= x2+bx+c中,得:

        ,

        解得:

        故拋物線的解析式:y= x2﹣x﹣4.

        (2)由題意,新拋物線的解析式可表示為:y= (x+m)2﹣(x+m)﹣4+ ,即:y= x2+(m﹣1)x+ m2﹣m﹣ ;

        它的頂點(diǎn)坐標(biāo)P:(1﹣m,﹣1);

        由(1)的拋物線解析式可得:C(4,0);

        設(shè)直線AC的解析式為y=kx+b(k≠0),把x=4,y=0代入,

        ∴4k+b=0,b=﹣4,

        ∴y=x﹣4.

        同理直線AB:y=﹣2x﹣4;

        當(dāng)點(diǎn)P在直線AB上時,﹣2(1﹣m)﹣4=﹣1,解得:m= ;

        當(dāng)點(diǎn)P在直線AC上時,(1﹣m)﹣4=﹣1,解得:m=﹣2;

        ∴當(dāng)點(diǎn)P在△ABC內(nèi)時,﹣2

        又∵m>0,

        ∴符合條件的m的取值范圍:0

        (3)由A(0,﹣4)、C(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;

        如圖,在OA上取ON=OB=2,則∠ONB=∠ACB=45°;

        ∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠OMB=∠NBA;

        如圖,在△ABN、△AM1B中,

        ∠BAN=∠M1AB,∠ABN=∠AM1B,

        ∴△ABN∽△AM1B,得:AB2=AN•AM1;

        易得:AB2=(﹣2)2+42=20,AN=OA﹣ON=4﹣2=2;

        ∴AM1=20÷2=10;

        而∠BM1A=∠BM2A=∠ABN,

        ∴OM1=OM2=6,AM2=OM2﹣OA=6﹣4=2.

        綜上,AM的長為10或2.

      猜你喜歡:

      1.2017申論地市級模擬真題答案解析

      2.2017遼寧省高考英語真題

      3.2017河北公務(wù)員行測模擬真題(2)

      4.2017高考數(shù)學(xué)真題分類匯編

      5.2017河北公務(wù)員行測模擬真題

      6.2017河南省考聯(lián)考行測模擬真題(2)

      2017遼寧鞍山中考數(shù)學(xué)模擬試題(2)

      2017遼寧鞍山中考數(shù)學(xué)模擬真題答案 一、選擇題(本大題共14小題,每小題3分,共42分)在每小題所給出的四個選項中,只有一項是符合題目要求的 1.+(﹣3)的
      推薦度:
      點(diǎn)擊下載文檔文檔為doc格式

      精選文章

      • 2017涼山州數(shù)學(xué)中考模擬真題
        2017涼山州數(shù)學(xué)中考模擬真題

        學(xué)生在準(zhǔn)備中考數(shù)學(xué)的時候常常不知道該如何有效復(fù)習(xí),學(xué)生要多做中考模擬試題,多加復(fù)習(xí)才可以拿到好成績,以下是小編精心整理的2017涼山州數(shù)學(xué)中考

      • 2017連云港中考數(shù)學(xué)模擬試卷
        2017連云港中考數(shù)學(xué)模擬試卷

        考生想在中考數(shù)學(xué)中取得好成績就需要掌握中考數(shù)學(xué)模擬試題,為了幫助考生們掌握,以下是小編精心整理的2017連云港中考數(shù)學(xué)模擬試題,希望能幫到大家

      • 2017連云港中考數(shù)學(xué)練習(xí)試題答案
        2017連云港中考數(shù)學(xué)練習(xí)試題答案

        中考的數(shù)學(xué)要想取得好成績就需要了解中考數(shù)學(xué)練習(xí)真題,學(xué)生備考的時候掌握中考數(shù)學(xué)練習(xí)真題自然能考得好。以下是小編精心整理的2017連云港中考數(shù)學(xué)

      • 2017麗水中考數(shù)學(xué)模擬真題解析
        2017麗水中考數(shù)學(xué)模擬真題解析

        初三的學(xué)生備考的階段就要多做中考數(shù)學(xué)模擬試題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是小編精心整理的2017麗水中考數(shù)學(xué)模擬試題解析,希望

      32689