八年級教學教案(2)
八年級教學教案(三)
教學目標
1、 理解并掌握等腰三角形的判定定理及推論
2、 能利用其性質與判定證明線段或角的相等關系.
教學重點
等腰三角形的判定定理及推論的運用
教學難點
正確區(qū)分等腰三角形的判定與性質.
能夠利用等腰三角形的判定定理證明線段的相等關系.
教學過程:
一、復習等腰三角形的性質
二、新授:
i提出問題,創(chuàng)設情境
出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(b點)為b標,然后在這棵樹的正南方(南岸a點抽一小旗作標志)沿南偏東60°方向走一段距離到c處時,測得∠acb為30°,這時,地質專家測得ac的長度就可知河流寬度.
學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.
ii引入新課
1.由性質定理的題設和結論的變化,引出研究的內容——在△abc中,苦∠b=∠c,則ab= ac嗎?
作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?
2.引導學生根據圖形,寫出已知、求證.
2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.
4.引導學生說出引例中地質專家的測量方法的根據.
iii例題與練習
1.如圖2
其中△abc是等腰三角形的是 [ ]
2.①如圖3,已知△abc中,ab=ac.∠a=36°,則∠c______(根據什么?).
?、谌鐖D4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根據什么?).
?、廴粢阎?ang;a=36°,∠c=72°,bd平分∠abc交ac于d,判斷圖5中等腰三角形有______.
?、苋粢阎?ad=4cm,則bc______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例: 如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.
分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.
練習:5.(l)如圖6,在△abc中,ab=ac,∠abc、∠acb的平分線相交于點f,過f作de//bc,交ab于點d,交ac于e.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件ab=ac,其他條件不變,圖6中還有等腰三角形嗎?
iv課堂小結
1.判定一個三角形是等腰三角形有幾種方法?
2.判定一個三角形是等邊三角形有幾種方法?
3.等腰三角形的性質定理與判定定理有何關系?
4.現(xiàn)在證明線段相等問題,一般應從幾方面考慮?
布置作業(yè)
1.閱讀教材
2.書面作業(yè):教材第150頁第12題
3、《課堂感悟與探究》
有關八年級教學教案推薦:
八年級教學教案(2)
下一篇:北師大五年級數學下冊教案