亚洲欧美精品沙发,日韩在线精品视频,亚洲Av每日更新在线观看,亚洲国产另类一区在线5

<pre id="hdphd"></pre>

  • <div id="hdphd"><small id="hdphd"></small></div>
      學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 學(xué)習(xí)方法指導(dǎo) > 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間: 文軒0 分享

      2024高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      數(shù)學(xué)訓(xùn)練了我們的邏輯思考能力,從理解基本原理到推導(dǎo)復(fù)雜的定理都離不開(kāi)合理的推理和證明過(guò)程。下面是小編為大家?guī)?lái)的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望大家能夠喜歡!快來(lái)看看吧!

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      一、求導(dǎo)數(shù)的方法

      (1)基本求導(dǎo)公式

      (2)導(dǎo)數(shù)的四則運(yùn)算

      (3)復(fù)合函數(shù)的導(dǎo)數(shù)

      設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即

      二、關(guān)于極限

      1、數(shù)列的極限:

      粗略地說(shuō),就是當(dāng)數(shù)列的項(xiàng)n無(wú)限增大時(shí),數(shù)列的項(xiàng)無(wú)限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

      2、函數(shù)的極限:

      當(dāng)自變量x無(wú)限趨近于常數(shù)時(shí),如果函數(shù)無(wú)限趨近于一個(gè)常數(shù),就說(shuō)當(dāng)x趨近于時(shí),函數(shù)的極限是,記作

      三、導(dǎo)數(shù)的概念

      1、在處的導(dǎo)數(shù)。

      2、在的導(dǎo)數(shù)。

      3。函數(shù)在點(diǎn)處的'導(dǎo)數(shù)的幾何意義:

      函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,

      即k=,相應(yīng)的切線方程是

      注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的導(dǎo)數(shù)。

      例、若=2,則=()A—1B—2C1D

      四、導(dǎo)數(shù)的綜合運(yùn)用

      (一)曲線的切線

      函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

      (1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=

      (2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。

      集合與函數(shù)

      1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

      2.在應(yīng)用條件時(shí),易A忽略是空集的情況

      3.你會(huì)用補(bǔ)集的思想解決有關(guān)問(wèn)題嗎?

      4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

      5.你知道“否命題”與“命題的否定形式”的區(qū)別。

      6.求解與函數(shù)有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則。

      7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱。

      8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。

      9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。

      10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法

      11. 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

      12.求函數(shù)的值域必須先求函數(shù)的定義域。

      13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?

      ①比較函數(shù)值的大小;

      ②解抽象函數(shù)不等式;

      ③求參數(shù)的范圍(恒成立問(wèn)題).這幾種基本應(yīng)用你掌握了嗎?

      14.解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

      (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

      15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

      16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

      17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒(méi)有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

      求函數(shù)的單調(diào)性

      利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).

      利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.

      反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

      (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

      (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的'x值不構(gòu)成區(qū)間);

      (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.

      求函數(shù)的單調(diào)性

      利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).

      利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.

      反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

      (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

      (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的'x值不構(gòu)成區(qū)間);

      (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.

      數(shù)列題

      1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

      2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

      3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

      2006889