數(shù)學(xué)考試中三角函數(shù)題的應(yīng)用
數(shù)學(xué)考試中三角函數(shù)題的應(yīng)用!
在考試前,合理安排時(shí)間進(jìn)行全面復(fù)習(xí)。重點(diǎn)復(fù)習(xí)課堂筆記、習(xí)題集和課本內(nèi)的重要知識(shí)點(diǎn),并進(jìn)行針對(duì)性的練習(xí)和解答。下面是小編為大家?guī)淼?/span>數(shù)學(xué)考試中三角函數(shù)題的應(yīng)用,希望大家能夠喜歡!快來看看吧!
數(shù)學(xué)考試中三角函數(shù)題的應(yīng)用
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中?,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。
數(shù)列題
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。
函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的`數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們?cè)诮獯饠?shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
概率問題
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
沉著應(yīng)對(duì)考試,確保旗開得勝
良好的開端是成功的一半,從考試心理角度來說,這確實(shí)是有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽全卷,摸透題情,然后選擇好答題順序,再穩(wěn)操一兩道易題熟題,讓自己產(chǎn)生"旗開得勝"的快意,從而有一個(gè)良好的開端,以振奮精神,鼓舞士氣,很快進(jìn)入最佳思維狀態(tài),之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見機(jī)攀高。